基于多尺度多轴特征融合的医学图像分割算法
作者:
作者单位:

重庆大学 计算机学院

中图分类号:

TP391.41 ?????

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


The medical image segmentation algorithm based on multi-scale and multi-axis feature fusion
Author:
Affiliation:

School of Computer Science,Chongqing University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    基于深度学习的自动医学图像分割在临床诊断和治疗中具有重要作用。针对传统卷积神经网络(CNN)模型受限于局部感受野的局限性,以及Transformer和多层感知机(MLP)模型在样本不足的医学图像数据集上容易过拟合的问题,提出了一种多尺度多轴特征混合模型MSAFNet。该模型采用一种新颖的多轴混合残差通道注意力块(MX-RCAB),关注局部细节和全局依赖性,从而增强空间和通道维度的特征表达;同时,利用空间交叉门控块(SCGB)过滤冗余信息,捕获具有判别特征的底层细节信息,从而提升分割性能。在Synapse和ACDC数据集上的实验结果显示,MSAFNet在平均DSC上分别达到85.59%和92.37%,均优于nnUNet,TransUNet等代表性医学图像分割方法。

    Abstract:

    Automatic medical image segmentation based on deep learning plays a crucial role in clinical diagnosis and treatment. To address the limitations of traditional convolutional neural network (CNN) models, which are constrained by local receptive fields, and the overfitting issues of Transformer and multilayer perceptron (MLP) models on small medical image datasets, we propose a multi-scale multi-axis feature fusion model called MSAFNet. This model employs a novel multi-axis mixed residual channel attention block (MX-RCAB) that focuses on local details and global dependencies, thereby enhancing feature representation in both spatial and channel dimensions. Additionally, it utilizes a spatial cross-gating block (SCGB) to filter redundant information and capture discriminative low-level details, thereby improving segmentation performance. Experimental results on the Synapse and ACDC datasets demonstrate that MSAFNet achieves average DSCs of 85.59% and 92.37%, respectively, outperforming representative medical image segmentation methods such as nnUNet and TransUNet.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-26
  • 最后修改日期:2025-02-22
  • 录用日期:2025-02-24
文章二维码