基于离散小波变换和独立成分分析的多通道脑电信号伪迹去除方法
DOI:
CSTR:
作者:
作者单位:

1.重庆理工大学 重庆市光纤传感与光电检测重点实验室;2.重庆理工大学 附属中心医院;3.浙江省德欧电气高档伺服数控系统高新技术企业研究开发中心;4.重庆理工大学 重庆市光纤传感与光电检测重点实验室,浙江省德欧电气高档伺服数控系统高新技术企业研究开发中心

作者简介:

通讯作者:

中图分类号:

TN911.72????

基金项目:

1、浙江省科学技术厅“尖兵”研发攻关计划(2022C01089) 2、国家重点研发计划常见多发病防治研究(2021YFC2501502) 3、重庆市教育委员会科学技术研究项目(KJQN202201110) 4、重庆市教委科学技术研究青年项目(KJQN202101124) 5、重庆市研究生创新项目(CYS23666)


A multi-channel EEG signal artifact removal method based on discrete wavelet transform and independent component analysis
Author:
Affiliation:

1.Chongqing Key Laboratory of Optical Fiber Sensing and Photoelectric Detection, Chongqing University of Technology;2.The Affiliated Central Hospital of Chongqing University of Technology;3.Zhejiang Deou Electric high-grade servo CNC system high-tech enterprise research and development center;4.Chongqing Key Laboratory of Optical Fiber Sensing and Photoelectric Detection, Chongqing University of Technology,Zhejiang Deou Electric high-grade servo CNC system high-tech enterprise research and development center

Fund Project:

1.Zhejiang Provincial Department of Science and Technology "Pioneer" Research and Development Program(2022C01089), 2. Research on the prevention and treatment of common and frequent diseases in the National Key R&D Program (2021YFC2501502), 3.Science and Technology Research Project of Chongqing Municipal Education Commission (KJQN202201110), 4.Chongqing Municipal Education Commission Science and Technology Research Youth Project (KJQN202101124), 5.Chongqing Graduate Innovation Program (CYS23666).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    多通道EEG信号常包含时频重叠的伪迹,传统方法在去除伪迹时容易丢失脑电信号的有效成分,尤其在伪迹与脑电信号频率特性相似时尤为突出。为解决这一问题,提出了一种改进的基于离散小波变换和独立成分分析的伪迹去除方法。该方法首先通过离散小波变换对EEG信号进行时频分解,捕捉信号的时频特性,并结合多维特征选择与优化技术筛选出关键信号成分,最后采用FastICA算法去除眼电伪迹。该方法特别优化了时频重叠伪迹问题,通过动态调整特征选择和滤波策略,避免了传统方法在伪迹与脑电信号频率相似时导致的信号丢失。实验结果表明,改进方法有效解决了时频重叠伪迹问题,与传统方法对比,信噪比提高了4.5 dB,并显著增强了Alpha波和Beta波的功率占比,证明了在去伪迹的同时能够有效保留脑电信号质量,为脑电设备提供了更加高效和可靠的信号处理方案。

    Abstract:

    Multi-channel EEG signals often contain time-frequency overlapping artifacts, and the active components of the EEG signal are easily lost when the artifacts are removed by traditional methods, especially when the frequency characteristics of the artifacts are similar to the EEG signals. In order to solve this problem, an improved artifact removal method based on discrete wavelet transform and independent component analysis was proposed. In this method, the time-frequency decomposition of the EEG signal is first carried out by discrete wavelet transform, the time-frequency characteristics of the signal are captured, and the key signal components are screened out by combining multi-dimensional feature selection and optimization techniques, and finally the FastICA algorithm is used to remove the ocular electrophrasal artifact. In particular, this method optimizes the problem of time-frequency overlap artifacts, and avoids the signal loss caused by traditional methods when the frequency of artifacts and EEG signals are similar by dynamically adjusting the feature selection and filtering strategies. Compared with the traditional method, the signal-to-noise ratio is increased by 4.5 dB, and the power ratio of alpha wave and beta wave is significantly enhanced, which proves that the quality of EEG signal can be effectively preserved while removing artifact, which provides a more efficient and reliable signal processing scheme for EEG devices.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-30
  • 最后修改日期:2025-02-13
  • 录用日期:2025-02-18
  • 在线发布日期:
  • 出版日期:
文章二维码