铁路工程铺轨基地碳排放测算及影响因素研究
作者:
作者单位:

1.兰州交通大学 土木工程学院;2.中国铁道科学研究院集团有限公司 电子计算技术研究所

中图分类号:

U215??????????????????

基金项目:

中国国家铁路集团有限公司科技研究开发计划实验室基础研究项目资金资助(L2023Z001)。


Research on carbon emission calculate and influencing factors of railway track-laying base
Author:
Affiliation:

1.College of Civil Engineering,Lanzhou Jiaotong University;2.Institute of Computing Technologies,China Academy of Railway Sciences Corporation Limited

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    铺轨基地作为铁路工程重要的大型临时工程,其碳排放是铁路工程物化阶段不容忽视的碳排放来源。通过碳排放因子法建立铺轨基地全生命周期碳排放测算模型;然后提取铺轨基地碳排放特征作为影响因素,并通过特征重要度排序识别关键影响因素;最后通过可解释机器学习模型将关键影响因素对碳排放贡献可视化,剖析关键影响因素对碳排放的影响机理。结果表明:铺轨基地全生命周期碳排放总量为4825.134~15122.059t;铺轨基地建材生产阶段碳排放占比最高(72%-86%);根据铺轨基地影响因素重要度排序结果,识别出5个关键影响因素分别为基地面积、地基处理方式、道路硬化方式、机械走行轨道长度和股道长度;通过SHAP概括图和依赖性散点图分析关键影响因素对碳排放产生的影响。研究结论可以为铁路工程铺轨基地碳减排相关研究提供理论依据。

    Abstract:

    As an important large-scale temporary project of railway engineering, the carbon emission of track-laying base is the source of carbon emission that cannot be ignored in the materialization stage of railway engineering. The carbon emission factor method was used to establish the carbon emission measurement model in the life cycle of railway track-laying base. Then, the carbon emission characteristics of track-laying base were extracted as influencing factors, and the key influencing factors were identified by feature importance ranking. Finally, the interpretable machine learning model was used to visualize the contribution of key influencing factors to carbon emissions, and analyze the impact mechanism of key influencing factors on carbon emissions. The results show that the total life cycle carbon emission of the track-laying base is 4825.134~15122.059t. The carbon emission ratio of building materials in the production stage of rail laying base was the highest (72%-86%). According to the ranking results of the importance of influencing factors of track laying base, the five key influencing factors are identified as base area, foundation treatment method, road hardening method, mechanical track length and stock track length. The influence of key factors on carbon emissions was analyzed by SHAP summary diagram and dependency scatter diagram. The research results can provide theoretical basis for the research on carbon emission reduction of railway track-laying base.

    参考文献
    [1] 金凤君, 陈卓. 新时代交通强国的地理内涵与目标[J].经济地理, 2023,43(02):1-9.JIN Fengjun, CHEN Zhuo. The geographic connotation and goals of building a strong transportation country in the New Era [J]. Economic Geography, 2023, 43 (02): 1-9. (in Chinese)
    [2] 牛宛玉. 长大铁路路基轨道工程全生命周期碳排放及绿色施工碳减排分析[D]. 北京:北京交通大学, 2023.NIU Wanyu. Analysis of carbon emissions and green construction carbon reduction in the life cycle of long railway roadbed and track engineering [D]. Beijing:Beijing Jiaotong University, 2023. (in Chinese)
    [3] 张志永. 新建铁路铺轨基地选址综合评价方法研究[D]. 辽宁:大连交通大学, 2022.ZHANG Zhiyong. Research on comprehensive evaluation method for site selection of new railway track laying base [D]. Liaoning:Dalian Jiaotong University, 2022. (in Chinese)
    [4] Tian Ai-qing,?? Wang Xiao-yang,? Xu? He-ying, et al. Multi-objective optimization model for railway heavy-haul traffic: Addressing carbon emissions reduction and transport efficiency improvement[J]. Energy,2024,294.
    [5] Zhang Wei-ke, Zeng Ming, Zhang Yu-feng, et al. Reducing carbon emissions: Can high-speed railway contribute?[J]. Journal of Cleaner Production,2023,413.
    [6] PU Hao, CAI Ling, SONG Tao-ran, et al. Minimizing costs and carbon emissions in railway alignment optimization: A bi-objective model [J]. Transportation Research Part D,2023,116.
    [7] CUI Zhanwei, CHEN Jinjie, LI Chao, et al. The calculation and analysis of carbon emission in traction power supply system of high-speed rail [J].Tehni?ki vjesnik,2023,30(1):
    [8] 汪莹, 高佳钰, 雷雨轩.我国铁路运营碳排放影响因素研究[J].铁道学报, 2020,42(04):7-16.WANG Ying, GAO Jiayu, LEI Yuxuan. Research on the influencing factors of carbon emissions in railway operation in China [J]. Journal of Railway, 2020, 42 (04): 7-16. (in Chinese)
    [9] 史一丹,鲍学英,刘北胜,等.铁路桥梁不同建造方案碳排放对比及减碳策略分析[J/OL].铁道标准设计. https://doi.org/10.13238/j.issn.1004-2954.202403200006SHI Yidan, BAO Xueying, LIU Beisheng, et al. Carbon Emission Comparison and Carbon Reduction Strategy Analysis of Different Construction Plans for Railway Bridges [J/OL]. Railway Standard Design. https://doi.org/10.13238/j.issn.1004-2954.202403200006 (in Chinese)
    [10] 鲍学英, 韩通, 霍雨雨.铁路轨道工程物化阶段碳排放预测及影响因素研究[J/OL].铁道科学与工程学报. https://doi.org/10.19713/j.cnki.43-1423/u.T20240050BAO Xueying, HAN Tong, HUO Yuyu. Prediction and influencing factors of carbon emissions in the physical and chemical stages of railway track engineering [J/OL]. Journal of Railway Science and Engineering. https://doi.org/10.19713/j.cnki.43-1423/u.T20240050 (in Chinese)
    [11] 林家琛.基于AHP-TOPSIS方法的高速铁路铺轨基地选址研究[J].铁路工程技术与经济,2023,38(03):46-50.LIN Jiachen. Study on site selection of high speed railway track laying base based on AHP-TOPSIS method [J]. Railway Engineering Technology and Economics, 2023, 38 (03): 46-50. (in Chinese)
    [12] 王奇胜.粤港澳大湾区城际铁路铺轨基地设置及建设方案研究[J].中国铁路,2023,(04):15-20.WANG Qisheng. Research on the establishment and construction plan of intercity railway track laying base in Guangdong Hong Kong Macao Greater Bay Area [J]. China Railway, 2023, (04): 15-20. (in Chinese)
    [13] 中国铁路总公司.铁路大型临时工程和过渡工程设计规范:Q/CR9149-2018[S].北京:中国铁道出版社.2018.China railway corporation. Design specification for large temporary and transitional railway projects: Q/CR9149-2018 [S]. Beijing: China Railway Press. 2018. (in Chinese)
    [14] 陈进杰, 王兴举, 王祥琴, 等. 高速铁路全生命周期碳排放计算[J]. 铁道学报, 2016, 38 (12): 47-55.CHEN Jinjie, WANG Xingju, WANG Xiangqin, et al. Calculation of carbon emissions throughout the lifecycle of high-speed railways [J]. Journal of Railway, 2016, 38 (12): 47-55. (in Chinese)
    [15] 孙雪兵. 基于减碳技术敏感性分析的建筑碳排放和成本研究[D]. 北京:北京交通大学, 2023.SUN Xuebing. Research on building carbon emissions and costs based on sensitivity analysis of carbon reduction technologies [D]. Beijing:Beijing Jiaotong University, 2023. (in Chinese)
    [16] 陈坚, 陈嘉果, 陈琦, 等. 山地城市道路交通碳排放影响因素非线性关系模型[J/OL]. 交通运输系统工程与信息.https://link.cnki.net/urlid/11.4520.U.20240709.1746.006CHEN Jian, CHEN Jiaguo, CHEN Qi, et al. Nonlinear relationship model of factors influencing carbon emissions from road traffic in mountainous cities [J/OL]. Transportation System Engineering and Information. https://link.cnki.net/urlid/11.4520.U.20240709.1746.006 (in Chinese)
    [17] 张悦琦, 任鸿瑞. 融合特征优选与随机森林算法的GF-6影像东北一季稻遥感提取[J]. 遥感学报, 2023, 27 (09): 2153-2164.ZHANG Yueqi, REN Hongrui. GF-6 image remote sensing extraction of Northeast one season rice using fusion feature optimization and random forest algorithm [J]. Journal of Remote Sensing, 2023, 27 (09): 2153-2164. (in Chinese)
    [18] 余文梦, 张婷婷, 沈大军. 基于随机森林模型的我国县域碳排放强度格局与影响因素演进分析[J]. 中国环境科学, 2022, 42 (06): 2788-2798.YU Wenmeng, ZHANG Tingting, SHEN Dajun. Analysis of the evolution of carbon emission intensity patterns and influencing factors in Chinese counties based on random forest model [J]. China Environmental Science, 2022, 42 (06): 2788-2798. (in Chinese)
    [19] 沈隆, 周颖. 基于大数据变量最优组合的违约预测模型——以中国小企业为例[J]. 系统工程理论与实践, 2024, 44 (03): 912-933.SHEN Long, ZHOU Ying. Default prediction model based on optimal combination of big data variables: taking Chinese small enterprises as an example [J]. Systems Engineering Theory and Practice, 2024, 44 (03): 912-933. (in Chinese)
    [20] 龙潇, 孙锐, 郑桐. 基于卷积神经网络的液化预测模型及可解释性分析 [J/OL].岩土力学. https://link.cnki.net/urlid/42.1199.o3.20240725.1028.005LONG Xiao, SUN Rui, ZHENG Tong. Liquefaction prediction model and interpretability analysis based on convolutional neural network [J/OL]. Geotechnical mechanics.https://link.cnki.net/urlid/42.1199.o3.20240725.1028.005 (in Chinese)
    [21] LUNDBERG S, LEE S I. A unified approach to interpreting model predictions[J]. ArXiv e-Prints, 2017: arXiv: 1705.07874.
    [22] 魏夕凯, 谭效时, 林明, 等. 2005—2035年全国电网碳排放因子的计算与预测[J]. 综合智慧能源, 2024, 46 (03): 72-78.WEI Xikai, TAN Xiaoshi, LIN Ming, et al. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Smart Energy, 2024, 46 (03): 72-78. (in Chinese)
    [23] 汤文, 谢明杰, 黄丹. 基于3D激光扫描技术的粗集料三维形态特征分析[J]. 北京工业大学学报, 2024, 50 (08): 948-957.TANG Wen, XIE Mingjie, HUANG Dan. Analysis of 3D shape characteristics of coarse aggregate based on 3D laser scanning technology [J]. Journal of Beijing Institute of Technology, 2024, 50 (08): 948-957. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:98
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-09-12
  • 最后修改日期:2024-09-27
  • 录用日期:2024-10-08
文章二维码