宽粒径分布颗粒系统分阶段流态特征及气泡行为研究
作者:
作者单位:

1.攀枝花学院 钒钛学院;2.重庆大学 材料科学与工程学院;3.攀枝花学院

中图分类号:

TF543


Study on stage flow characteristics and bubble behavior of wide particle size distribution particle system
Affiliation:

1.panzhihua university;2.Chongqing university

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为探索Geldart B类颗粒的铁矿粉流态化过程由于偏析而带来分阶段流态化特征,实验首先以平均粒径为350 μm的铁矿粉为对象,在二维流化床反应器内开展了鼓泡流态化实验研究,得到了单粒径分布铁矿粉鼓泡流态化的分阶段流态化特征,并结合粉化效应解释了分阶段流态化产生的原因;然后以三组分玻璃珠系统为对象开展了分阶段流态化实验研究,采用床层压降标准差识别分阶段流态化过程,最后对比了平均粒径相同的玻璃珠和铁矿粉系统在不同流态化阶段气泡行为特征;研究结果表明铁矿粉在流化过程中的粉化效应会导致颗粒粒径分布标准差升高,流态化过程中颗粒偏析导致出现不同气泡行为特征使床层表现出分阶段的流态化特征;结合分阶段流态化特征和床层压降标准差发现不同流态化阶段气泡行为导致标准差发生改变,稳定流态化阶段床层压降标准差趋于定值;矿粉流态化过程中存在的粉化效应,导致粒度分布标准差增大,在稳定流态化阶段气泡平均当量直径增大,气泡纵向速度和横向速度也表现出增大的趋势。

    Abstract:

    To explore the characteristics of staged fluidization caused by segregation in the fluidization process of iron ore powder with Geldart-B particles, the experimental study on bubbling fluidization of iron ore powder with average particle size of 350 μm was carried out in a two-dimensional fluidized bed reactor. The characteristics of staged fluidization of bubbling fluidization of iron ore powder with single particle size distribution were obtained, and the causes of staged fluidization were explained in combination with the pulverization effect. Then, a staged fluidization experiment was carried out on a three-component glass bead system. The standard deviation of bed pressure drop was used to identify the staged fluidization process. Finally, the bubble behavior characteristics of glass beads and iron ore powder systems with the same average particle size in different fluidization stages were compared. The results show that the pulverization effect of iron ore powder in the fluidization process will lead to an increase in the standard deviation of particle size distribution. The particle segregation in the fluidization process leads to different bubble behavior characteristics, which makes the bed show staged fluidization characteristics. Combined with the characteristics of staged fluidization and the standard deviation of bed pressure drop, it is found that the bubble behavior in different fluidization stages leads to the change of standard deviation, and the standard deviation of bed pressure drop in stable fluidization stage tends to be fixed. The pulverization effect in the fluidization process of ore powder leads to the increase of the standard deviation of particle size distribution. In the stable fluidization stage, the average equivalent diameter of bubbles increases, and the longitudinal velocity and transverse velocity of bubbles also increase.

    参考文献
    [1] W. Jeong, J. Lee, C.-K. Ko, S.-H. Yi, J.H. Lee, Development and evaluation of Finex off-gas capture and utilization processes for sustainable steelmaking industry[J], International Journal of Greenhouse Gas Control, 2023,127, 103936.
    [2] 王旭, 钢铁行业环境污染现状及改进措施[J], 中国环保产业, 2019, 03, 25-26.Wang Xu, Environmental Pollution Status and Improvement Measures in Iron and Steel Industry[J], China Environmental Protection Industry, 2019, 03, 25-26.
    [3] Z. Gao, G. Lu, C. Duan, C. Zhou, H. Zhu, Bed density prediction during fluidized bed scaling up using machine learning[J], Advanced Powder Technology, 2023, 34(12), 104278.
    [4] S. Yoon, C. Ko, M.K. Shin, J.M. Lee, Experimental investigation of lab-scale fluidized bed for fine iron ore drying application under constant bed temperature condition[J], Advanced Powder Technology, 2024, 35(5), 104443.
    [5] 庞克亮, 孙敏敏, 刘福军, 等. 流态化炼铁工艺的发展及存在的问题[J], 上海金属, 10.19947/j.issn.1001-7208.2024.01.04.Pang K.L., Sun M.M., Liu F.J., et al. Development and Existent Problems for Fluidized Ironmaking Process[J], Shanghai Metals, 10.19947/j.issn.1001-7208.2024.01.04.
    [6] F.M. Zaid, H. Al-Rubaye, T.M. Aljuwaya, M.H. Al-Dahhan, Assessment of the Dimensionless Groups-Based Scale-Up of Gas–Solid Fluidized Beds[J], Processes, 2023,11(1),168.
    [7] A. Efhaima, M.H. Al‐Dahhan, Validation of the new mechanistic scale‐up of gas‐solid fluidized beds using advanced non‐invasive measurement techniques[J], The Canadian Journal of Chemical Engineering, 2021, 99(9), 1984-2002.
    [8] 刘典福, 孙雍春, 周超群, 非均匀布风内循环流化床中气泡特性的可视化研究[J], 动力工程学报, 2019, 39(01)1-6+24.Liu D.F., Sun Y.C., Zhou C.Q., Visualized Research on Bubbling Characteristics in an Internally Circulating Fluidized Bed with Uneven Air Distribution [J], Journal Of Chinese Society of Power Engineering, 2019, 39(01)1-6+24.
    [9] M.A. van der Hoef, M. van Sint Annaland, N. Deen, J. Kuipers, Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy[J], Annual Review of Fluid Mechanics, 2008, 40(1), 47-70.
    [10] 黄宏继, 鼓泡流化床气固两相流化特性的实验研究[D]. 重庆:重庆大学, 2018.Huang H.J., Experimental Study on Gas-solid Two-phase Fluidization Characteristics in Bubbling Fluidized Bed[D]. Chongqing:Chongqing University, 2018.
    [11] S. Karimipour, T. Pugsley, A critical evaluation of literature correlations for predicting bubble size and velocity in gas–solid fluidized beds[J], Powder Technology, 2011, 205(1-3) 1-14.
    [12] 赵金鹏, 张永民, 兰斌, 等. 气固鼓泡床结构双流体传热模型及其模拟验证[J], 化工学报, 2024, 75(04), 1497-1507.Zhao J.P., Zhang Y.M., Lan B., et al., Model development and validation of structural two-fluid model for heattransfer in a gas-solid bubbling fluidized bed[J], CIESC Journal, 2024, 75(04), 1497-1507.
    [13] 罗节文, 王雅彬, 李稳, 等. 气固鼓泡床结构双流体模型及其模拟验证[J], 过程工程学报, 2024, 24(04), 435-444.LUO J. W., Wang Y.B., Li W., et al., Model development and validation of a structural two-fluid model for gas-solid bubbling fluidized beds[J], The Chinese Journal of Process Engineering, 2024, 24(04), 435-444.
    [14] S. Schneiderbauer, M.E. Kinaci, F. Hauzenberger, Computational Fluid Dynamics Simulation of Iron Ore Reduction in Industrial‐Scale Fluidized Beds[J], Steel Research International, 2020, 91(12), 2000232.
    [15] S.-H. Yi, M.-E. Choi, D.-H. Kim, C.-K. Ko, W.-I. Park, S.-Y. Kim, Finex as an environmentally sustainable ironmaking process[J], Ironmaking Steelmaking, 2019, 46(7), 625-631.
    [16] J. Zhang, Z. Peng, L. Yi, M. Rao, CO–H2 Gas-Based Reduction Behavior of Cr-Rich Electroplating Sludge Mixed with Iron Ore Powder[J], Metals, 2024, 14(3), 325.
    [17] 向杰, 气固流化床的压力和空隙率波动信号分析[D]. 北京:清华大学, 2018.Xiang J., Analysis of Pressure and Voidage Fluctuations in Gas-Solid Fluidized Beds[D]. Beijing:Tsinghua University, 2018.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:108
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-09-15
  • 最后修改日期:2024-11-16
  • 录用日期:2024-12-02
文章二维码