基于剖面分割的大型风力发电机叶片三维覆冰增长特性分析
作者:
作者单位:

1.南方电网科学研究院有限责任公司 广州;2.贵州电网有限责任公司电力科学研究院 南方电网有限责任公司防冰减灾重点实验室;3.贵州电网有限责任公司电力科学研究院 南方电网有限责任公司防冰减灾重点实验室 贵阳

中图分类号:

TM85

基金项目:

南方电网有限责任公司防冰减灾重点实验室 贵州电网公司2022年第一批网级决策科技项目


Analysis of Three-dimensional Icing Characteristics of Large Wind Turbine Blades Based on Profile Segmentation
Author:
Affiliation:

1.Electric Power Research Institute,China Southern Power Grid;2.Key Laboratory of Ice Prevention&3.Disater Reducing of China Southern Power Grid Co.Ltd, (Electric Power Research Institute of Guizhou Power Grid Co. Ltd;4.Electric Power Research Institute, China Southern Power Grid;5.Key Laboratory of Ice Prevention Disater Reducing of China Southern Power Grid CoLtd,Electric Power Research Institute of Guizhou Power Grid Co Ltd,Guiyang Guizhou

Fund Project:

the Science and Technology Project of Key Laboratory of Ice Prevention&Disater Reducing of China Southern Power Grid Co.Ltd.

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    覆冰是影响风力发电机安全稳定运行的重要因素,建立风力发电机叶片覆冰数值计算模型是实现其覆冰模拟和预测的重要手段。有限元法是当前最常用的方法,但该方法计算量大,效率较低。本文以300kW风力发电机叶片为研究对象,基于剖面分割法对叶片表面水滴碰撞、冻结和覆冰形态变化展开研究,建立了风机叶片多截面气液二相流仿真计算模型,推导了叶片表面水滴局部、整体碰撞系数和冻结系数公式,实现了在较小计算量下对风机叶片表面整体水滴碰冻特性的获取。研究结果表明:风机叶片水滴碰撞系数由叶尖向叶根方向逐渐减小,β1最大值和α1到叶中(0.5 R处)均可降低80%以上。风机叶片覆冰水滴捕获量最大位置位于靠近叶尖的0.8R ~ 0.9R处,而一般覆冰均主要分别在0.5R~ R范围内,水膜溢流作用使风机叶片截面的水滴冻结系数呈现水滴碰撞区域小而溢流区域大的特点,而越靠近风机叶片叶尖的位置覆冰增长过程冰形迭代变化程度越大,覆冰速率线性度也越差。

    Abstract:

    Ice accretion is a crucial factor affecting the safe and stable operation of wind turbines. Establishing a numerical calculation model for ice accretion on wind turbine blades is an essential means to simulate and predict icing phenomena. While the finite element method is currently the most widely used approach, it involves significant computational complexity and lower efficiency. This study focuses on the blades of a 300 kW wind turbine, employing a sectional segmentation method to investigate water droplet impact, freezing, and ice accretion morphology changes on the blade surface.

    参考文献
    [1] 王月普. 风力发电现状与发展趋势分析[J]. 电力设备管理. 2020(11): 21-22.
    [2] 王孟夏,周生远,杨明,等. 计及海底电缆热特性的可接纳海上风电装机容量评估方法[J]. 电力系统自动化. 2021, 45(6): 195-202.WangMengxia, ZhouShengyuan, Ming Yang, et al. Assessment Method for Acceptable Installed Capacity of Offshore Wind Farms Considering Thermal Characteristics of Submarine Cables[J]. Automation of Electric Power Systems. 2021, 45(6): 195-202.
    [3] 胡琴,杨秀余,梅冰笑,等. 风力发电机叶片临界防冰与融冰功率密度分析[J]. 中国电机工程学报. 2015, 35(19): 4997-5002.Qin H. U., YangXiuyu, MeiBingxiao, et al. Analysis of Threshold Power Density for Anti-icing and De-icing of Wind Turbine Blade[J]. Proceedings of the CSEE. 2015, 35(19): 4997-5002.
    [4] Zhang Yingwei, Guo Wenfeng, Li Yan, et al. An experimental study of icing distribution on a symmetrical airfoil for wind turbine blade in the offshore environmental condition[J]. Ocean Engineering. 2023, 273: 113960.
    [5] 胡琴,王欢,邱刚,等. 风力发电机叶片覆冰量化分析及其应用[J]. 电工技术学报. 2022, 37(21): 5607-5616.
    [6] FernandoVillalpando, MarceloReggio, AdrianIlinca. Prediction of ice accretion and anti-icing heating power on wind turbine blades using standard commercial software[J]. Energy. 2016, 114: 1041-1052.
    [7] 黎芷毓,蒋兴良,韩兴波,等. 风力发电机叶片的雾凇覆冰数值模拟[J]. 哈尔滨工业大学学报. 2022, 54(3): 155-162.Zhiyu L. I., JiangXingliang, HanXingbo, et al. Numerical simulation on rime icing of wind turbine blades[J]. Journal of Harbin Institute of Technology. 2022, 54(3): 155-162.
    [8] Shu Lichun, Liang Jian, Hu Qin, et al. Study on small wind turbine icing and its performance[J]. Cold Regions Science and Technology. 2017, 134: 11-19.
    [9] Jin Jiayi, MuhammadshakeelVirk. Experimental study of ice accretion on S826 & S832 wind turbine blade profiles[J]. Cold Regions Science and Technology. 2020, 169: 102913.
    [10] GalalmIbrahim, KevinPope, GregfNaterer. Scaling formulation of multiphase flow and droplet trajectories with rime ice accretion on a rotating wind turbine blade[J]. Journal of Wind Engineering and Industrial Aerodynamics. 2023, 232: 105247.
    [11] Wang Qiang, Yi Xian, Liu Yu, et al. Simulation and analysis of wind turbine ice accretion under yaw condition via an Improved Multi-Shot Icing Computational Model[J]. Renewable Energy. 2020, 162: 1854-1873.
    [12] ChankyuSon, Kim Taeseong. Development of an icing simulation code for rotating wind turbines[J]. Journal of Wind Engineering and Industrial Aerodynamics. 2020, 203: 104239.
    [13] 舒立春,任晓凯,胡琴,等. 环境参数对小型风力发电机叶片覆冰特性及输出功率的影响[J]. 中国电机工程学报. 2016, 36(21): 5873-5878.ShuLichun, RenXiaokai, Qin H. U., et al. Influences of Environmental Parameters on Icing Characteristics and Output Power of Small Wind Turbine[J]. 中国电机工程学报. 2016, 36(21): 5873-5878.
    [14] 舒立春,李瀚涛,胡琴,等. 自然环境叶片覆冰程度对风力机功率损失的影响[J]. 中国电机工程学报. 2018, 38(18): 5599-5605.ShuLichun, Hantao L. I., Qin H. U., et al. Effects of Ice Degree of Blades on Power Losses of Wind Turbines at Natural Environments[J]. Proceedings of the CSEE. 2018, 38(18): 5599-5605.
    [15] 舒立春,于周,李瀚涛,等. 洁净与覆冰条件下风力发电机输出功率计算方法及现场试验验证[J]. 电工技术学报. 2023: 10-19595.
    [16] 胡琴,杨大川,蒋兴良,等. 叶片模拟冰对风力发电机功率特性影响的试验研究[J]. 电工技术学报. 2020, 35(22): 4807-4815.Qin Hu, YangDachuan, JiangXingliang, et al. Experimental Study on the Effect of Blade Simulated Icing on Power Characteristics of Wind Turbine[J]. Transactions of China Electrotechnical Society. 2020, 35(22): 4807-4815.
    [17] 李瀚涛,舒立春,胡琴,等. 考虑覆冰粗糙度影响的风力发电机叶片气动性能数值仿真[J]. 电工技术学报. 2018, 33(10): 2253-2260.LiHantao, ShuLichun, Qin Hu, et al. Numerical Simulation of Wind Turbine Blades Aerodynamic Performance Based on Ice Roughness Effect[J]. Transactions of China Electrotechnical Society. 2018, 33(10): 2253-2260.
    [18] 韩兴波,蒋兴良,毕聪来,等. 基于分散型旋转圆导体的覆冰参数预测[J]. 电工技术学报. 2019, 34(5): 1096-1105.HanXingbo, JiangXingliang, BiConglai, et al. Prediction of Icing Environment Parameters Based on Decentralized Rotating Conductors[J]. Transactions of China Electrotechnical Society. 2019, 34(5): 1096-1105.
    [19] LasseMakkonen. Modeling of Ice Accretion on Wires[J]. Journal of Applied Meteorology. 1984, 23(6): 929-939.
    [20] 黎芷毓. 风力发电机叶片雾凇覆冰数值模拟及自然覆冰验证研究[D]. 重庆大学, 2021.
    [21] 梁健,舒立春,胡琴,等. 风力机叶片雨淞覆冰的三维数值模拟及试验研究[J]. 中国电机工程学报. 2017, 37(15): 4430-4436.Jian Liang, ShuLichun, Qin H. U., et al. 3-D Numerical Simulations and Experiments on Glaze Ice Accretion of Wind Turbine Blades[J]. Proceedings of the CSEE. 2017, 37(15): 4430-4436.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:44
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-09-20
  • 最后修改日期:2024-12-10
  • 录用日期:2024-12-13
文章二维码