小普朗特数液桥的热毛细对流向湍流转捩的途径
作者:
作者单位:

重庆大学 航空航天学院

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)项目编号:12102071,12172070


The pathway of transition toward turbulence for thermocapillary convection in liquid bridge with small Prandtl number
Author:
Affiliation:

ChongQing University College of Aerospace Engineerinring

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan), Foundation number:12102071,12172070

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    表面张力梯度驱动的液桥热毛细对流,随着液桥上下端温差的增大,流体系统经过一系列分岔,最终演化为混沌状态。通过三维数值模拟研究了微重力条件下,熔体普朗特数为0.01和0.02,高径比(液桥高度与半径的比值)为1的等径液桥热毛细对流向湍流转捩的途径。利用时间序列频谱分析(FFT)和动力学模态分解(DMD)方法揭示了流场的时空结构特征。结果表明,普朗特数为0.01和0.02的液桥热毛细对流向湍流转捩的途径均始于准周期分岔途径,前者经历了三频准周期运动, 后者经历了锁频特征的二频准周期运动。在周期振荡阶段,普朗特数为0.02的液桥热毛细对流经历了从脉冲型振荡到旋转型振荡的转变,周向波数由1和2的混合模态变为波数为2的模态。相比之下,普朗特数为0.01的液桥热毛细对流在周期和准周期流动阶段均表现为脉冲型振荡,周向波数为1和2的混合模态。

    Abstract:

    Thermocapillary convection driven by surface tension gradient undergoes a series of bifurcation and ultimately evolves into a chaotic state, while temperature difference between the upper and lower ends of the liquid bridge increases. This study employed three-dimensional numerical simulations to investigate the convection transition for Prandtl numbers(Pr) of 0.01 and 0.02 with aspect ratio (a ratio between height to radius) of 1 under microgravity. This study utilized time series spectrum analysis and dynamic mode decomposition to elucidate the spatiotemporal structure of the flow field. The results show that thermocapillary convection in liquid bridges with Pr=0.01 and Pr=0.02 transitions to turbulence through quasi-periodic bifurcation pathways. Specifically, the Pr=0.01 case exhibits a two-frequency quasi-periodic oscillation with frequency-locking characteristics, while the Pr=0.02 case demonstrates a three-frequency quasi-periodic oscillation. During the periodic oscillation stage, thermocapillary convection in liquid bridges with Pr=0.02 shifts from pulse oscillation to rotational oscillation, with wave number changing from a mixture of 1 and 2 to a dominant 2. In contrast, the Pr=0.01 case remains pulsed in both periodic and quasi-periodic phases, with a wave number that remains a mixture of 1 and 2.

    参考文献
    [1] Kang Q, Wu D, Duan L, et al. The effects of geometry and heating rate on thermocapillary convection in the liquid bridge [J]. Journal of Fluid Mechanics, 2019, 881: 951-982.
    [2] Stojanovic M, Kuhlmann H. Stability of thermocapillary flow in high-prandtl-number liquid bridges exposed to a coaxial gas s0tream [J]. Microgravity Science and Technology, 2020, 32(5): 953-959.
    [3] Le C C, Liu L G, Li Z Y. Thermocapillary instabilities in half zone liquid bridges of low prandtl fluid with non-equal disks under microgravity [J]. Journal of Crystal Growth, 2021, 126063: 560-561.
    [4] Rupp R, Muller G, Neumann G. Three-dimensional time dependent modelling of the marangoni convection in zone melting configurations for GaAs [J]. Journal of Crystal Growth, 1989, 97(1): 34-41.
    [5] Levenstam M, Amberg G. Hydrodynamical instabilities of thermocapillary flow in a half-zone [J]. Journal of Fluid Mechanics, 1995, 297: 357-372.
    [6] Imaishi N, Yasuhiro S, Akiyama Y, et al. Numerical simulation of oscillatory marangoni flow in half-zone liquid bridge of low prandtl number fluid [J]. Journal of Crystal Growth, 2001, 230: 164–171.
    [7] Levenstam M, Amberg G, Winkler C. Instabilities of thermocapillary convection in a half-zone at intermediate prandtl numbers [J]. Physics of Fluids, 2001, 13(4): 807-816.
    [8] Kang Q, Wu D, Duan L, et al. Space experimental study on wave modes under instability of thermocapillary convection in liquid bridges on Tiangong-2 [J]. Physics of Fluids, 2020, 32(3): 034107.
    [9] Zeng Z, Mizuseki H, Simamura K, et al. Three-dimensional oscillatory thermocapillary convection in liquid bridge under microgravity [J]. International Journal of Heat and Mass Transfer, 2001, 44(19): 3765-3774.
    [10] Jayakrishnan R, Tiwari S. On three-dimensional flow structures and oscillatory instability due to free surface heat loss in half-floating zones under microgravity [J]. Advances in Space Research, 2021, 67(10): 3354-3377.
    [11] Duan L S, Duan L, Jiang H, et al. Oscillation transition routes of buoyant-thermocapillary convection in annular liquid layers [J]. Microgravity Science and Technology, 2018, 30(6): 865-876.
    [12] Yasnou V, Gaponenko Y, Mialdun A, et al. Influence of a coaxial gas flow on the evolution of oscillatory states in a liquid bridge [J]. International Journal of Heat and Mass Transfer, 2018, 123: 747-759.
    [13] 郭子漪, 李凯, 康琦, 段俐, 胡文瑞. 界面张力梯度驱动对流向湍流转捩的研究 [J]. 力学进展, 2021, 51(1): 1-28Guo Z Y, Li K, Kang Q, et al. Study on bifurcation to chaos of surface tension gradient driven flow [J]. Advances in Mechanics, 2021, 51(1): 1-28.
    [14] Guo Z Y, Li J C, Li K, et al. Dependency of transition in thermocapillary convection on volume ratio in annular pools of large-Pr fluid in microgravity [J]. International Journal of Heat and Mass Transfer, 2023, 208: 124059.
    [15] Kang Q, Wang J, Duan L, et al. Transition to chaos of thermocapillary convection [J]. Physical Review E, 2022, 106(3-2): 035103.
    [16] Wang J, Wu D, Duan L, et al. Transition to chaos of boyant-thermocapillary convection in large-scale liquid bridges [J]. Microgravity Science and Technology, 2020, 32(2): 217-227.
    [17] Gaponenko Y, Yasnou V, Mialdun A, et al. Hydrothermal waves in a liquid bridge subjected to a gas stream along the interface [J]. Journal of Fluid Mechanics, 2021, 908: A34.
    [18] Lan C W, Chian J H. Three-dimensional simulation of marangoni flow and interfaces in floating-zone silicon crystal growth [J]. Journal of Crystal Growth, 2001, 230(1-2): 172-180.
    [19] Kou J, Zhang W. An improved criterion to select dominant modes from dynamic mode decomposition [J]. European Journal of Mechanics B/Fluids, 2017, 62: 109-129.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:126
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-09-24
  • 最后修改日期:2024-11-30
  • 录用日期:2025-01-03
文章二维码