基于北斗监测数据的高陡边坡变形Trans-CNN预测模型
作者:
作者单位:

1.重庆大学自动化学院;2.重庆市西部水资源开发有限公司;3.香港大学 建筑学院;4.重庆大学 自动化学院

中图分类号:

TP39???????

基金项目:

重庆市水利科技项目(CQSLK-2023028)


Trans-CNN prediction model of high and steep slope deformation based on beidou detection data
Author:
Affiliation:

1.School of Automation, Chongqing University;2.Chongqing West Water Resources Development Company Limited;3.Zhijiang Song,The faculty of Architecture,University of HongKong;4.School of Automation,Chongqing University

Fund Project:

Chong Qing Water Conservancy Science and Technology Project(Grant No.CQSLK-2023028)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在大型工程的建设过程中常常会出现高陡边坡,其变形往往会导致坍塌、滑坡等地质灾害,给人们的生命财产安全带来危害,如何高效采集位移数据并建立合适的预测模型对高陡边坡的变形进行准确预测对于保障工程的顺利实施和人民的生命财产安全至关重要。本文通过在Transformer模型中融合CNN卷积层和residual残差结构的方法构建Trans-CNN混合模型,结合重庆某大型水利工程的项目背景,使用北斗卫星监测系统的采样数据集,通过对结果进行分析,发现Trans-CNN模型的mae,mse,rmse的值较单一模型相比都有所降低,且预测曲线和真实曲线的拟合程度较好,证明了Trans-CNN模型在提高预测精度上的有效性,从而可以为其他工程实施过程中对高陡边坡变形的预测分析提供可行性方案。

    Abstract:

    There are often high and steep slopes during the construction process of large projections, whose deformation often leads to geological disasters. This brings harm to the safety of people"s life and property. Hence, collecting displacement data efficiently and establishing a suitable and accurate hybrid prediction model becomes essential. This study aims to propose the Trans-CNN hybrid model by fusing the CNN convolutional layer and residual residual structure in the Transformer model. This optimized Transformer algorithm model was employed for the displacement data collected by the Beidou satellite system in a large water conservancy project in Chongqing. The results found that the mae, mse and rmse values of the Trans-CNN model are lower than single models, which proves the prediction accuracy of the Trans-CNN. Thus, it can provide a feasible scheme for the prediction and analysis of the deformation of the high and steep slope in the implementation of other projects.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:45
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-09-29
  • 最后修改日期:2025-02-13
  • 录用日期:2025-02-18
文章二维码