表面形变强化对Q235钢的腐蚀性能研究
作者:
作者单位:

1.重庆市电力科学研究院 重庆;2.重庆大学材料科学与工程学院 重庆

中图分类号:

TG178???????

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


The Study of Corrosion Performance of Q235 Steel under Surface Deformation Strengthening
Author:
Affiliation:

1.State Grid Chongqing Electric Power Research Institute;2.College of Materials Science and Engineering,Chongqing University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本文通过溶液浸泡和土壤模拟腐蚀试验,初步发现表面形变强化处理对Q235钢的耐蚀性有显著改善。基于此,进一步对其在不同pH值、氯离子()和硫酸根离子()浓度的土壤模拟溶液中的电化学性能进行了研究,采用动电位极化和电化学阻抗谱(EIS)对其腐蚀行为进行分析。研究结果表明,经过表面形变强化处理后的Q235钢(ST-Q235)在不同浓度的氯离子环境中表现出优于Q235的耐蚀性,在高浓度条件下,对氯离子浓度表现出敏感性。对于不同浓度的环境,Q235钢的腐蚀电流密度随着浓度的增加而上升,而ST-Q235在高浓度下形成钝化层,表现出良好的耐蚀性。且在较高pH值(pH 6)下,ST-Q235的腐蚀电流密度显著降低,耐蚀性明显优于Q235。

    Abstract:

    In this study, preliminary findings from solution immersion and soil simulation corrosion tests reveal a significant improvement in the corrosion resistance of Q235 steel after surface deformation strengthening treatment. Based on these results, further investigations were conducted on its electrochemical performance in soil-simulating solutions with varying pH levels, chloride ions (), and sulfate ions () concentrations. The corrosion behavior was analyzed using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results indicate that surface deformation strengthened Q235 steel (ST-Q235) exhibits superior corrosion resistance compared to Q235 steel in chloride environments of different concentrations, showing sensitivity to high levels. In sulfate environments, the corrosion rate of Q235 increases with higherconcentrations, while ST-Q235 forms a passivation layer in highconcentrations, demonstrating good corrosion resistance. Additionally, at a higher pH value (pH 6), the corrosion rate of ST-Q235 significantly decreases, showing markedly better corrosion resistance compared to Q235.

    参考文献
    [1] 丁长军, 杨焕新, 王建东, 等. 接地网材料的腐蚀及其防护发展[J]. 腐蚀科学与防护技术, 2019, 31(1): 109-113.Ding C J, Yang H X, Wang J D, et al. Corrosion and Protection of Materials for Grounding Grid[J]. Corrosion Science and Protection Technology, 2019, 31(1): 109-113. (in Chinese).
    [2] 鞠海涛, 张磊. 接地系统腐蚀防护技术研究进展[J]. 天津化工, 2023, 37(3): 119-122.Ju H T, Zhang L. Grounding system corrosion protection technology research progress[J]. Tianjin Chemical Industry, 2023, 37(3): 119-122. (in Chinese).
    [3] Trdan U, Hocevar M, Gregorcic P. Transition from superhydrophilic to superhydrophobic state of laser textured stainless steel surface and its effect on corrosion resistance[J/OL]. Corrosion Science, 2017, 123: 21-26.
    [4] Zhao P, Ren X, Ren Y, et al. Effect of laser shock peening on microstructure and hot corrosion of TC11 alloy[J/OL]. Surface and Coatings Technology, 2018, 335: 32-40.
    [5] Zhang C H, Song W, Wang Y M, et al. Effect of Surface Strengthening on Corrosion Property of Ti-6Al-4V in 3.5% NaCl[J/OL]. Applied Mechanics and Materials, 2016, 853: 473-477.
    [6] Noor E A, AL-Moubaraki A H. Influence of Soil Moisture Content on the Corrosion Behavior of X60 Steel in Different Soils[J/OL]. Arabian Journal for Science and Engineering, 2014, 39(7): 5421-5435.
    [7] Md Noor N, Othman S R, Nordin Y, et al. Qualitative Assessment of Chloride and Sulphate Influence on Soil Corrosivity[J/OL]. Advanced Materials Research, 2012, 446-449: 3462-3466.
    [8] Song Y, Jiang G, Chen Y, et al. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments[J/OL]. Scientific Reports, 2017, 7(1): 6865.
    [9] 潘巍, 李瑜, 孙昭宜, 等. 电化学阻抗谱技术在腐蚀防护中的应用现状[J/OL]. 化工新型材料, 2021, 49(10): 257-260, 265.Pan W, Li W, Sun Z X, et al. Application of electrochemical impedance spectroscopy in corrosion protection[J/OL]. New Chemical Materials, 2021, 49(10): 257-260,265. (in Chinese)
    [10] 吕耀辉, 刘玉欣, 何东昱, 等. 电化学阻抗技术在金属腐蚀及涂层防护中的研究进展[J]. 电镀与精饰, 2018, 40(6): 22-28.Lv Y H, Liu Y X, He D Y, et al. Development on Electrochemical Impedance Spectroscopy Technology in Metal Corrosion and Coating Anticorrosion[J]. Plating and Finishing, 2018, 40(6): 22-28. (in Chinese)
    [11] Cabrini M, Lorenzi S, Pastore T. Effects of thiosulphates and sulphite ions on steel corrosion[J/OL]. Corrosion Science, 2018, 135: 158-166.
    [12] Benmoussa A, Hadjel M, Traisnel M. Corrosion behavior of API 5L X-60 pipeline steel exposed to near-neutral pH soil simulating solution[J/OL]. Materials and Corrosion-Werkstoffe Und Korrosion, 2006, 57(10): 771-777.
    [13] Chung T, So Y S, Kim W C, et al. Evaluation of the Influence of the Combination of pH, Chloride, and Sulfate on the Corrosion Behavior of Pipeline Steel in Soil Using Response Surface Methodology[J/OL]. Materials, 2021, 14(21): 6596.
    [14] Zhao J, Meng X, Ren X, et al. Review on soil corrosion and protection of grounding grids[J/OL]. Materials, 2024, 17(2): 507.
    [15] Comtreras A, Quej L M, Liu H B, et al. Role of Mexican Clay Soils on Corrosiveness and Stress Corrosion Cracking of Low-Carbon Pipeline Steels: A Case Study[J/OL]. Corrosion 2020, 76(10): 967-984.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:35
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-10-09
  • 最后修改日期:2024-11-06
  • 录用日期:2025-02-08
文章二维码