基于元动作单元的数控机床精度退化预测方法
作者:
作者单位:

重庆大学机械工程学院

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Precision degradation prediction method of CNC machine tools based on meta-action unit
Author:
Affiliation:

College of Mechanical Engineering ChongQing University

Fund Project:

the National Natural Science Foundation, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了准确预测数控机床的精度退化情况,保证加工质量,提出一种基于“功能-运动-动作”分解的精度预测方法。该方法从元动作单元零件出发,结合黏着磨损模型和磨粒磨损模型量化误差,通过几何与运动关系建立精度退化函数,并基于多体系统理论和齐次坐标变换矩阵推导机床加工精度演变规律,实现无加工数据条件下的精度预测。实验验证表明,在南京某数控车床上应用该方法时,预测值与实际测量值的平均偏差为4 μm,相比传统预测方法具有更好的可解释性和准确性。该方法为数控机床精度维护提供了一种理论可靠、预测精确的技术手段。

    Abstract:

    To accurately predict the precision degradation of CNC machine tools and ensure machining quality, we propose a precision prediction method based on "function-motion-action". The method starts from meta-action unit components. It quantifies error propagation using both adhesive wear and abrasive wear models. We establish accuracy degradation functions by analyzing geometric and kinematic relationships. The machining accuracy evolution patterns are derived through multi-body system theory and homogeneous coordinate transformation matrices. This method achieves reliable accuracy prediction without requiring actual machining data. In experiments on a Nanjing CNC lathe, the mean prediction error was 4 μm. This result demonstrates better interpretability and accuracy than conventional methods. This method offers a theoretical foundation and practical solution for maintaining CNC machine tool accuracy.

    参考文献
    [1] Zhao J J, Lin M X, Song X C, et al. Investigation of load distribution and deformations for ball screws with the effects of turning torque and geometric errors[J]. Mech. Mach. Theory, 2019, 141: 95–116.
    [2] Liu J L, Ma C, Wang S L. Precision loss modeling method of ball screw pair[J]. Mech. yst. Signal Process, 2020, 135: 106397.
    [3] Wang T X ,Chen G Y ,Sun J H, et al.Prediction and compensation of position error based on deformation analysis of ball screw under complex loads[J].The International Journal of Advanced Manufacturing Technology,2024,(prepublish):1-22.
    [4] Pozzebon M L, Lin C-L, Meehan P A. On the modeling of wear in Grease-Lubricated spherical roller bearings [J]. Tribol. Trans., 2020, 63 (5): 806-819.
    [5] Winkler A, Marian M, Tremmel S, et al. Numerical modeling of wear in a thrust roller bearing under mixed elastohydrodynamic lubrication[J]. Lubricants, 2020, 8 (5): 58.
    [6] Xu H Y ,Ma H ,Wen B G , et al.Dynamic characteristics of spindle-bearing with tilted pedestal and clearance fit[J].International Journal of Mechanical Sciences,2024,261108683-.
    [7] Wang S ,He G ,Zhang D , et al.Innovative design methods for the geometric accuracy of machine tool guide rail oriented to spatial accuracy[J].Journal of Manufacturing Processes,2024,119483-498.
    [8] 李聪波, 何娇, 杜彦斌, 等. 基于Archard模型的机床导轨磨损模型及有限元分析[J]. 机械工程学报, 2016, 52 (15): 106–113. Li C B, He J, Du Y B, et al. Archard model based machine tool wear model and finite element analysis[J]. Journal of Mechanical Engineering, 2016, 52 (15): 106–113.
    [9] Liu W J ,Zhang S , Lin J H , et al.Investigation of static characteristics for linear rolling guide with considering geometric errors[J].Tribology International,2023,187.
    [10] Zhang H, Wang J, S. Wang S, et al. A comparative investigation of meshing characteristics of anti-backlash single-and double-roller enveloping hourglass worm gears[J]. Adv. Mech. Des. Syst. Manuf., 2019, 13 (3): JAMDSM0064–JAMDSM0064.
    [11] 万伦. 精密数控转台蜗轮蜗杆副耐磨性提升技术研究[D]. 重庆:重庆大学机械与运载工程学院, 2021.
    [12] Cheng Y N , Lu M D ,Gai X Y, et al. Research on multi-signal milling tool wear prediction method based on GAF-ResNext[J].Robotics and Computer-Integrated Manufacturing,2024,85.
    [13] 曹大理, 孙惠斌, 张纪铎, 等. 基于卷积神经网络的刀具磨损在线监测[J]. 计算机集成制造系统, 2020, 26 (1): 74–80.
    Cao D L, Sun H B, Zhang J D, et al. In-process tool condition monitoring based on convolution neural network[J]. Computer Integrated Manufacturing Systems, 2020, 26 (1): 74–80.
    [15] [14]Li Y L, Zhang G B, Wang Y Q, et al. Research on reliability allocation technology for NC machine tool meta-action[J]. Quality and Reliability Engineering International, 2019, 35(6): 2016-2044.
    [16] [15]朱泽润,吴积荣,李建刚,等.五轴机床运动学建模与几何误差补偿[J].武汉科技大学学报,2024,47(03):182-189.Zhu Z R, Wu J R, Li J G, et al. Kinematic modeling and geometric error compensation for five-axis machine tools[J]. Journal of Wuhan University of Science and Technology,2024,47(03):182-189.
    [17] [16]张露熹. 五轴数控机床误差补偿及精度可靠性评估[D].甘肃:兰州理工大学机电工程学院, 2022.李忠群,刘鸿,刘强,等.四轴联动机床几何误差建模分析与评估[J/OL].机床与液压,2024(22):1-12[2024-06-12]. http://kns.cnki.net/kcms/detail/44.1259.TH.20240102.1539.002.html.
    Li Z Q, Liu H, Liu Q, et al. Analysis and evaluation of geometric error modeling for four-axis linkage machine tools[J]. Machine Tool& Hydraulics, 2024(22):1-12[2024-06-12]. http://kns.cnki.net/kcms/detail/44.1259.TH.20240102.1539.002.html.[18]徐向红, 汤文成, 俞涛, 等. 基于Archard理论的滚珠丝杠磨损预测[J]. 组合机床与自动化加工技术, 2016, (02): 54-59.Xu X H, Tang W C, Yu T, et al. Wear prediction of ball screw using Archard''s model[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2016, (02): 54-59.
    [19] Hertz B H. On the contact of elastic solids[J]. Reine und angewandte Mathematik, 1882, 92: 156–171.
    [20] 李海洲,谢丽军,周梦洁,等.基于数据驱动的进给系统跟随误差预测[J].机电工程技术,2023,52(11):226-231.Li H Z, Xie L J, Zhou M J,et al. Data-driven feed system following error prediction[J]. Mechanical & Electrical Engineering Technology,2023,52(11):226-231.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:15
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-10-09
  • 最后修改日期:2025-05-13
  • 录用日期:2025-05-19
文章二维码