基于机器学习的汽车智能座舱告警系统
DOI:
CSTR:
作者:
作者单位:

1.星河智联汽车科技有限公司;2.广汽能源科技有限公司;3.广汽丰田汽车有限公司;4.华南理工大学

作者简介:

通讯作者:

中图分类号:

U469.72

基金项目:


Machine Learning-Based Intelligent Cockpit Alert System for Cars
Author:
Affiliation:

1.SYNCORE AUTOTECH Co., Ltd.;2.GAC Energy Technology Co., LTD;3..GAC Toyota Motor Co., LTD.;4.South China University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本研究探讨了一种基于机器学习技术的汽车智能座舱告警系统,旨在应对由众多告警源引发的安全风险问题。针对现行系统中告警信息的冗余和分类不精确等缺陷,本文提出了一种结合人工经验筛选法与CNN模型的混合筛选策略。具体而言,该策略通过整合来自不同设备的运行状态信息并进行有效分类,利用人工经验减少疑似缺陷信号,同时借助CNN(卷积神经网络)模型进行特征提取和精准分类。实验结果显示,CNN模型在测试集上的分类准确率达到了 89.07%,而将两种方法综合运用后,对所有原始告警信号的筛选准确率更是高达 99.998%,显著超越了现有 VAS系统的筛选准确率(90%)。这验证了所提出方法在告警信息筛选方面的高效性和卓越性。未来的研究将着重于增加训练数据量、优化模型参数以及改进文本预处理技术等方面,以期进一步提升系统的整体性能。

    Abstract:

    This study explores an intelligent automobile cockpit alarm system based on machine learning technology, aimed at addressing safety risk issues caused by numerous alarm sources. To tackle the deficiencies of redundancy and imprecise classification of alarm information in current systems, this paper proposes a hybrid selection strategy that combines manual experience filtering with an CNN (Artificial Neural Network) model. Specifically, this strategy integrates operational status information from various devices and performs effective classification, using manual experience to reduce suspected defect signals, while leveraging the CNN model for feature extraction and precise classification. Experimental results show that the CNN model achieved a classification accuracy of 89.07% on the test set, and after combining both methods, the selection accuracy for all original alarm signals reached an impressive 99.998%, significantly surpassing the selection accuracy of the existing VAS system (90%). This verifies the efficiency and excellence of the proposed method in alarm information filtering. Future research will focus on increasing the amount of training data, optimizing model parameters, and improving text pre-processing techniques, with the aim of further enhancing the overall system performance.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-02
  • 最后修改日期:2025-03-23
  • 录用日期:2025-04-07
  • 在线发布日期:
  • 出版日期:
文章二维码