融合优化VMD与Informer-BiLSTM的非平稳负荷预测
作者:
作者单位:

1.西安建筑科技大学 建筑设备科学与工程学院;2.西安建筑科技大学 信息与控制工程学院


Non-stationary load forecasting based on optimized VMD and Informer-BiLSTM
Author:
Affiliation:

1.School of Building Equipment Science and Engineering, Xi&2.amp;3.#39;4.&5.an University of Architecture and Technology;6.School of Information and Control Engineering, Xi'7.'

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [4]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对区域级电力负荷数据周期性强、波动性高以及预测精度不高等问题,提出了一种融合优化变分模态分解(variational mode decomposition,VMD)与Informer双向长短期记忆网络(informer-bidirectional long short-term memory,Informer-BiLSTM )的非平稳负荷预测方法。通过引入冠豪猪优化算法(crested porcupine optimizer,CPO)对VMD的模态数量和权重系数进行了优化,有效地将复杂负荷时间序列分解为多个固有模态函数,提取关键的时频特征。随后,利用Informer与BiLSTM构建并行预测模型,对分解后的各个分量进行精准预测,并引入集成算法进一步减小预测误差。实验结果表明,相较于其它组合预测模型,预测精度明显提高。

    Abstract:

    Aiming at the problems of strong periodicity, high volatility and low prediction accuracy of regional power load data, a non-stationary load forecasting method combining optimized variational mode decomposition(VMD) and Informer-Bidirectional Long Short-Term Memory (Informer-BiLSTM) is proposed. By introducing the crested porcupine optimizer (CPO), the number of modes and weight coefficients of VMD are optimized, and the complex load time series is effectively decomposed into multiple intrinsic mode functions to extract key time-frequency features. Subsequently, a parallel prediction model was constructed using Informer and BiLSTM to accurately predict each component after decomposition, and an integrated algorithm was introduced to further reduce the prediction error. The experimental results show that the prediction accuracy is significantly improved compared with other combined prediction models.

    参考文献
    [1] 王洪亮, 陈新源,赵雨梦. 基于集合经验模态分解和ARIMA-GRNN的负荷预测方法[J]. 电子科技, 2021, 34(12): 42-48.Wang H L, Chen X Y, Zhao Y M. Load forecasting method based on ensemble empirical mode decomposition and ARIMA-GRNN[J]. Electronic Science, 2021, 34(12): 42-48.(in Chinese)
    [2] 郭大亮, 沈峰, 于楚凡, 等. 基于数据挖掘的电力负荷预测系统设计[J]. 电子设计工程, 2021, 29(23): 60-64.Guo D L, Shen F, Yu C F, et al. Design of power load forecasting system based on data mining[J]. Electronic Design Engineering, 2021, 29(23): 60-64. (in Chinese)
    [3] 于军琪, 解云飞, 赵安军, 等. 基于VMD-GRU网络大型公共建筑冷负荷预测[J]. 重庆大学学报, 2023, 46(12): 66-79.Yu J Q, Xie Y F, Zhao A J, et al. Cooling load forecasting of large public buildings based on VMD-GRU network[J]. Journal of Chongqing University, 2023, 46(12): 66-79. (in Chinese)
    [4] 石文清, 吴开宇, 王东旭, 等. 基于时间序列分析和卡尔曼滤波算法的电力系统短期负荷预测[J]. 自动化技术与应用, 2018, 37(09):9-12+23.Shi W Q, Wu K Y, Wang D X, et al. Short-term load forecasting of power system based on time series analysis and Kalman filtering algorithm[J]. Automation Technology and Application, 2018
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:38
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-11-04
  • 最后修改日期:2024-12-02
  • 录用日期:2025-02-25
文章二维码