基于CP分解与核范数正则化的台区缺失用电数据张量补全
作者:
作者单位:

1.重庆大学电气工程学院;2.云南电网有限责任公司计量中心

中图分类号:

U469.72

基金项目:

国家电网公司总部科技项目“基于震电联合检测技术的变电站接地网状态'可视化’评估方法研究与工程应用”(5500-202427168A-1-1-ZN)资助


Tensor Completion of Missing Electricity Data in Transformer District Based on CP Decomposition and Nuclear Norm Regularization
Author:
Affiliation:

1.School of Electrical Engineering,Chongqing University;2.Measurement Center of Yunnan Power Grid Co.

Fund Project:

This work wassupported by the State GridCorporation of China(5500-202427168A-1-1-ZN)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对实际采集、传输和储存海量用电数据过程中存在丢失的数据质量问题,本文利用大型台区用户用电数据的时序和空间相关性,提出一种基于CP分解与核范数正则化联合约束的用电数据张量重构方法。首先,根据大型台区用户用电行为的部分潜在相似特征构建台区用电数据张量;其次,分别选择F范数和核范数对高斯噪声和理想完整用电数据进行正则化约束建立张量恢复模型;最后采用逐列更新的直接方式交替更新CP分解得到的矩阵因子直至收敛,从而实现缺失数据的高精度补全。通过仿真分析和对比实验验证了算法的有效性和准确性。

    Abstract:

    In response to the issue of data quality loss in the actual collection, transmission, and storage of massive electricity data, this paper proposes a method for reconstructing electricity data based on CP decomposition and kernel norm regularization joint constraints, utilizing the temporal and spatial correlations of large-scale substation user electricity data. Firstly, a tensor of electricity consumption data for the substation area is constructed based on some potential similar characteristics of the electricity consumption behavior of large-scale substation users; Secondly, the F-norm and kernel norm are selected to regularize Gaussian noise and ideal complete electricity data, respectively, to establish tensor recovery models; Finally, the matrix factors obtained from CP decomposition are alternately updated column by column until convergence, thereby achieving high-precision completion of missing data. The effectiveness and accuracy of the algorithm were verified through simulation analysis and comparative experiments.

    参考文献
    [1] 袁哲. 电力大数据应用综述[J]. 电工技术,2021(11):189-191,195. DOI:10.19768/j.cnki.dgjs.2021.11.056.
    [2] 王德文,孙志伟.电力用户侧大数据分析与并行负荷预测[J].中国电机工程学报,2015,35(03):527-537.DOI:10.13334/j.0258-8013.pcsee.2015.03.004.
    [3] 王鹏,林佳颖,郭屾等.配用电数据分析及应用[J].电网技术,2017,41(10):3333-3340.
    [4] 陈海文,王守相,梁栋等.用户节电的大数据分析及应用[J].电网技术,2019,43(4):1345-1353.
    [5] 张东霞,苗新,刘丽平等.智能电网大数据技术发展研究[J].中国电机工程学报,2015,35(1):2-12.
    [6] 王继业,季知祥,史梦洁等.智能配用电大数据需求分析与应用研究[J].中国电机工程学报,2015,35(8):1829-1836.
    [7] Genes,,Cristian等.Robust Recovery of Missing Data in Electricity Distribution Systems[J].IEEE TRANSACTIONS ON SMART GRID,2019,10(4):4057-4067.
    [8] 赵俊华,董朝阳,文福拴等.面向能源系统的数据科学:理论、技术与展望[J].电力系统自动化,2017,41(4):1-11+19.
    [9] 王守相,陈海文,潘志新等.采用改进生成式对抗网络的电力系统量测缺失数据重建方法[J].中国电机工程学报,2019,39(1):56-64.
    [10] 杨挺,何周泽,赵东艳等.基于FSOM神经网络的电能质量数据缺失修复算法[J].电网技术,2020,44(5):1941-1949.
    [11] Suo,,Qiuling等.Recurrent Imputation for Multivariate Time Series with Missing Values[],2019.
    [12] Meira,de,Andrade等.An Outliers Processing Module Based on Artificial Intelligence for Substations Metering System[J].IEEE TRANSACTIONS ON POWER SYSTEMS,2020,35(5):3400-3409.
    [13] 洪德华,张翠翠,宫政等.基于改进双向GABP神经网络的电力负荷缺失数据补全方法[J].电气自动化,2022,44(5):41-45.
    [14] 梁寿愚,方文崇,王瑾等.基于图规则化低秩矩阵恢复的用电数据修复与异常检测[J].电力系统自动化,2019,43(21):221-228.
    [15] 杨挺,李扬,何周泽等.基于矩阵填充的泛在电力物联网电能质量数据修复算法[J].电力系统自动化,2020,44(2):13-21.
    [16] 杨挺,孙兆帅,季浩等.基于矩阵范数优化理论的用电数据质量提升算法[J].中国电机工程学报,2022,42(10):3501-3511.
    [17] 刘清蝉,钟尧,林聪等.基于稳健非负矩阵分解的用电数据清洗和插补[J].电网技术,2024,48(5):2103-2112,I0084.
    [18] 钟尧,刘清蝉,李昕泓等.计及非负和低秩特性的用电数据缺失值插补[J].重庆大学学报,2024.
    [19] 赵洪山,寿佩瑶,马利波.低压台区缺失数据的张量补全方法[J].中国电机工程学报,2020,40(22):7328-7337.DOI:10.13334/j.0258-8013.pcsee.191738.
    [20] 雷明阳,陈静杰,欧晓勇等.基于张量分解的智能电表电压数据缺失填补算法[J].电网与清洁能源,2021,37(12):8-15.
    [21] 杨挺,叶芷杉,徐嘉成,杨振宁.基于低秩张量补全的非侵入式负荷监测缺失数据修复方法[J].电网技术,2024,48(1):394-404
    [22] 王毅,张宁,康重庆,等. 电力用户行为模型:基本概念与研究框架[J]. 电工技术学报,2019,34(10):2056-2068. DOI:10.19595/j.cnki.1000-6753.tces.190073.
    [23] Fazel M. Matrix rank minimization with applications[D]. PhD thesis, Stanford University, 2002.
    [24] Recht B, Fazel M, Parrilo P A. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[J]. SIAM review, 2010, 52(3): 471-501.
    [25] Candes E J, Plan Y. Matrix completion with noise[J]. Proceedings of the IEEE, 2010, 98(6): 925-936.
    [26] Srebro N, Rennie J, Jaakkola T. Maximum-margin matrix factorization[J]. Advances in neural information processing systems, 2004, 17.
    [27] Cai T T, Zhou W X. Matrix completion via max-norm constrained optimization[J]. 2016.
    [28] Bazerque J A, Mateos G, Giannakis G B. Rank regularization and Bayesian inference for tensor completion and extrapolation[J]. IEEE transactions on signal processing, 2013, 61(22): 5689-5703.
    [29] Mardani M, Mateos G, Giannakis G B. In-network sparsity-regularized rank minimization: Algorithms and applications[J]. arXiv preprint arXiv:1203.1570, 2012.
    [30] Kruskal J B. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics[J]. Linear algebra and its applications, 1977, 18(2): 95-138.
    [31] Ten Berge J M F, Sidiropoulos N D. On uniqueness in CANDECOMP/PARAFAC[J]. Psychometrika, 2002, 67: 399-409.Kolda T G, Bader B W. Tensor decompositions and applications[J]. SIAM review, 2009, 51(3): 455-500.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:26
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-11-07
  • 最后修改日期:2025-02-20
  • 录用日期:2025-02-25
文章二维码