基于三维流场的大风区铁路挡风墙优化设计
作者:
作者单位:

1.兰州交通大学 a. 自动化与电气工程学院;2.b. 甘肃省轨道交通电气自动化工程实验室

中图分类号:

U225.1

基金项目:

国家自然科学基金(52467017);国铁集团系统性重大科技项目(P2024G001);中国铁路北京局集团有限公司科技研究开发计划(2024AGD03)。


Design of railway wind-break wall in gale areas based on three-dimensionalflow field
Author:
Affiliation:

1.a. School of Automatic and Electrical Engineering;2.b. Rail Transit Electrical Automation Engineering Laboratory of Gansu Province,Lanzhou Jiaotong University,Lanzhou,730070. P. R. China;3.LANZHOU JIAOTONG UNIVERSITY

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    兰新高铁沿途地区大风频发,建立挡风墙虽可有效保障列车安全,但加剧了接触网正馈线舞动。为了抑制正馈线舞动,本文基于流体动力学理论建立了不同墙顶构造和开孔形式的挡风墙三维流场模型,对挡风墙结构进行了优化设计。结果表明:挡风墙的不同墙顶构造改变了正馈线周围及后方流场,降低了导线处风速、减小了高风速区范围。城墙式挡风墙缺口比例为0.5时,正馈线升力系数和阻力系数分别降低了26.40%和12.13%。挡风墙的开孔率越大,墙后方的高风速区范围越小,风速也越低。正馈线处风速降幅明显,气流趋于平稳。开孔率为0.4的圆孔式挡风墙下,正馈线的升、阻力系数分别降低了51.15%和45.59%。通过合理设计挡风墙结构,可以有效抑制正馈线的舞动。

    Abstract:

    The Lanzhou-Xinjiang High-Speed Railway passes through regions frequently affected by strong winds. Although the construction of wind-break walls can effectively ensure train safety, it exacerbates the galloping of the catenary positive feeder. To suppress the galloping of the positive feeder, this paper establishes a three-dimensional flow field model of wind-break walls with different wall top structures and perforation types based on fluid dynamics theory, and optimizes the design of the wind-break wall structure. The results show that different wall top structures of the wind-break wall alter the flow field around and behind the positive feeder line, reducing wind speed at the wire and decreasing the extent of the high-speed wind zone. When the gap ratio of the city wall-type wind-break wall is 0.5, the lift coefficient and drag coefficient of the positive feeder line decrease by 26.40% and 12.13%, respectively. The larger the porosity of the wind-break wall, the smaller the extent of the high-speed wind zone behind the wall, and the lower the wind speed. The reduction in wind speed at the positive feeder line is significant, and the airflow tends to stabilize. Under the circular perforated wind-break wall with a porosity of 0.4, the lift and drag coefficients of the positive feeder line decrease by 51.15% and 45.59%, respectively. By reasonably designing the wind-break wall structure, the galloping of the positive feeder can be effectively suppressed.

    参考文献
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:34
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-11-11
  • 最后修改日期:2025-01-20
  • 录用日期:2025-02-19
文章二维码