基于多尺度点云配准的多因子图优化移动机器人定位算法
作者单位:

重庆大学自动化学院

基金项目:

中央高校基本科研业务费国防专项(2024CDJGF-053)。


A multi-factor graph optimization localization algorithm for mobile robots based on multi-scale point cloud registration
Author:
Affiliation:

School of Automation, Chongqing University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对点云配准在实际环境中性能不稳定影响移动机器人定位精度的问题,提出了一种基于多尺度点云配准的多因子图优化移动机器人定位算法。首先,建立多尺度配准模型,在八叉树结构的特征地图中通过属性筛选将点与曲面元特征关联,迭代求解位姿,提高点云配准的稳定性。其次,构建基于因子图实现的滑动窗口优化模型,将激光雷达、IMU和轮速计的多种约束因子加入模型进行位姿优化,提高定位精度。多场景中实测数据表明,在室内场景中,该算法平均定位误差与LIO-mapping、LIO-SAM算法相比降低了57.79%和33.71%;在室外场景中,所提算法平均定位误差与LIO-mapping、LIO-SAM算法相比降低了74.00%和59.37%。该算法使移动机器人具有更高的定位精度和稳定性。

    Abstract:

    A multi-factor graph optimization-based mobile robot localization algorithm is proposed, utilizing multi-scale point cloud registration, in order to address the issue of unstable performance of point cloud registration affecting the localization accuracy of mobile robots in real-world environments. First, a multi-scale registration model is established, where point and surface element features are associated through attribute filtering in the octree-based feature map, and the pose is iteratively optimized to improve the stability of point cloud registration. Secondly, a sliding window optimization model based on factor graphs is constructed, incorporating multiple constraint factors from LiDAR, IMU, and wheel encoders to optimize the pose and enhance localization accuracy. Experimental results in multiple scenarios show that, in indoor environments, the proposed algorithm reduces the average localization error by 57.79% and 33.71% compared to the LIO-mapping and LIO-SAM algorithms, respectively; in outdoor environments, the average localization error is reduced by 74.00% and 59.37%, respectively, compared to the LIO-mapping and LIO-SAM algorithms. The proposed algorithm significantly improves the localization accuracy and stability of mobile robots.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-15
  • 最后修改日期:2025-03-14
  • 录用日期:2025-03-24
文章二维码