特高压大跨越输电塔线风灾易损性准静态分析
作者:
作者单位:

1.重庆大学土木工程学院;2.中国能源建设集团安徽省电力设计院有限公司

中图分类号:

TM75 ???? ????? ???

基金项目:

中国能源建设集团安徽省电力设计院有限公司科技项目


Quasi-Static Analysis for Wind Disasters Fragility of Ultra-High Voltage Long-Span Transmission Tower Lines
Author:
Affiliation:

1.School of Civil Engineering,Chongqing University;2.China Energy Construction Group Anhui Electric Power Design Institute Co,LTD

Fund Project:

Science and Technology Program of China Energy Construction Group Anhui Electric Power Design Institute Co.

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    特高压大跨越输电线路杆塔高度、档距都较大,易受风荷载影响,其风灾易损性分析是评估结构抗风可靠性的重要方法。以安徽某特高压大跨越输电塔为背景,基于随机风振响应分析工程理论与我国现行架空输电线路荷载规范获得该大跨越输电塔在风荷载作用下的结构效应分布,考虑结构材料参数的不确定性,得到其抗风承载能力性能概率分布,进一步以塔顶位移、修正的节间位移角为指标确定性能水准量化模型,并基于此计算得到输电塔风灾易损性曲线,研究结果表明:通过首次超越概率理论可以得到准静态输电塔线体系的风致效应分布;基于塔顶位移较基于修正的节间位移角建立的特高压大跨越输电塔线体系多重性能水准更保守;随着结构破坏程度的加重,结构的不确定性对结构承载力的影响越明显;风灾易损性分析表明该特高压大跨越塔在设计风荷载下具有较好的抗风可靠性,但其风致破坏表现出一定的脆性。

    Abstract:

    The Ultra-high voltage (UHV) and long-span (LS) transmission lines, which have large tower heights and long span distances, are susceptible to wind loads. Wind fragility analysis of these structures is an important method for assessing their reliability against wind. This study, taking an UHV-LS transmission tower in Anhui province as the background, based on random wind vibration response analysis engineering theory and China"s current overhead transmission line loading specification to obtain the structural effect distribution of the LS transmission tower under the action of the wind load, took into account the uncertainty of the structural material parameters to establish the probability distribution of wind load carrying capacity. Additionally, this study used the top of the tower displacement, the corrected angle of the inter-segmental displacement as an indicator of determining the level of performance quantitative modeling, and based on these calculations to obtain the transmission tower wind fragility curve. The results indicated that: the wind effect distribution of the quasi-static transmission tower line system could be obtained by the first time beyond the probability theory; the multiple performance level of the UHV-LS transmission tower line system based on the tower top displacement is more conservative than that based on the modified inter-nodal displacement angle; with the aggravation of the structure damage, the influence of structural uncertainty on the bearing capacity of the structure becomes more obvious; the wind fragility analysis shows that the UHV tower has good wind reliability under the design wind load, but its wind damage shows some brittleness.

    参考文献
    [1] Tamura Y, Chen B, Wu Y, et al. Classification of equivalent static wind loads: Comparisons and applications[J]. Reliability Engineering System Safety, 2024, 251: 110403.
    [2] 中华人民共和国住房和城乡建设部. 架空输电线路荷载规范: DL/T 5551-2018 [S]. 北京: 中国计划出版社,2019.Ministry of Housing and Urban-Rural Development, PRC. Load code for the design of overhead transmission line: DL/T 5551-2018 [S]. Beijing: China Planning Press, 2018. (in Chinese)
    [3] 中华人民共和国住房和城乡建设部. 建筑结构可靠性设计统一标准: GB50068-2018[S]. 北京: 中国建筑工业出版社, 2019.Ministry of Housing and Urban-Rural Development, PRC. Unified standard for reliability design of building structures: GB50068-2018[S]. Beijing: China Architecture Building Press, 2019. (in Chinese)
    [4] 欧进萍,段宇博. 结构抗风可靠度分析与设计的等效随机静风荷载[J]. 建筑结构, 1995(07), 27-33+42.Ou J P, Duan Y B. Wind resistance reliability analysis and design of structures equivalent random static wind loads [J]. Building Structure, 1995(07), 27-33+42. (in Chinese)
    [5] 王松涛, 高斐略, 李正良, 等. 现行输电塔设计规范可靠度水准的评估与分析[J]. 广东电力, 2015, 28(07), 100-108.Wang S T, Gao F L, Li Z L, et al. Evaluation and analysis on reliability level of current design specification for power transmission tower [J]. Guangdong Electric Power, 2015, 28(07), 100-108. (in Chinese)
    [6] 何浩林, 汪大海, 黄增浩, 等. 输电直线杆塔风灾易损性的准静态分析方法 [J/OL]. 中国电机工程学报, 1-11[2024-04-03]http://kns.cnki.net/kcms/detail/11.2107.TM.20221027.1021.006.html.He H L, Wang D H, Huang Z H, et al. Fragility analysis of transmission free-standing towers under wind disaster based on quasi-static method [J/OL]. Proceedings of the CSEE, 1-11[2024-04-03] http://kns.cnki.net/kcms/detail/11.2107.TM.20221027.1021.006.html. (in Chinese)
    [7] Pan H Y, Li C, Tian L. Seismic fragility analysis of transmission towers considering effects of soil-structure interaction and depth-varying ground motion inputs [J]. Bulletin of Earthquake Engineering, 2021, 19(11): 4311-4337.
    [8] 宋鹏彦, 赵仰康, 杨保卫. 基于整体易损性的猫头型输电塔抗倒塌能力分析[J]. 计算力学学报, 2023, 40(05), 710-717.Song P Y, Zhao Y K, Yang B W. Anti-collapse capacity assessment of owl type transmission towers based on global seismic fragility analysis [J]. Chinese Journal of Computational Mechanics, 2023,40(05), 710-717. (in Chinese)
    [9] Liang Y, Zhao C X, Wei Y Y, et al. Fragility analysis of an ultra-high voltage transmission tower in saline soil subjected to wind loads [J]. Structure and Infrastructure Engineering, 2023, pp:1–18.
    [10] Macedo F C, Alminhana F, Miguel L F, et al. Performance-based reliability assessment of transmission lines under tornado actions [J]. Reliability Engineering System Safety, 2024, 252: 110475.
    [11] 俞登科, 李正良, 韩枫, 等. 基于性能目标的特高压输电塔抗风可靠度分析[J]. 防灾减灾工程学报, 2013, 33(06), 657-662.Yu D K, Li Z L, Han F, et al. Reliability analysis on ultra-high voltage transmission tower under wind based on performance [J]. Journal of Disaster Prevention and Mitigation Engineering, 2013, 33(06), 657-662. (in Chinese)
    [12] 李正良, 张智航, 王涛. 考虑多重性能水准的特高压双柱悬索拉线塔风灾易损性分析[J/OL]. 中国电机工程学报, 1-12[2024-01-10]https://doi.org/10.13334/j.0258-8013.pcsee.231261.Li Z L, Zhang Z H, Wang T. Wind fragility analysis of UHV double column suspended guyed tower considering multiple performance levels [J/OL]. Proceedings of the CSEE, 1-12[2024-01-10] https://doi.org/10.13334/j.0258-8013.pcsee.231261. (in Chinese)
    [13] 王飞. 特高压输电线路杆塔结构抗震性能研究[D]. 中国地震局工程力学研究所, 2021.Wang F. Study on seismic performance of UHV transmission line tower structure [D]. Institute of Engineering Mechanics, China Earthquake Administration, 2021. (in Chinese)
    [14] Fu X, Wang J, Li H N, et al.Full-scale test and its numerical simulation of a transmission tower under extreme wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190, 119-133.
    [15] 林拥军, 林池锬, 刘先明, 等. 基于风致响应的高层建筑等效静力荷载研究[J]. 西南交通大学学报, 2019, 54(01): 137-144+188.Lin Y J, Lin C T, Liu X M, et al. Research on equivalent static load of high-rise buildings based on wind-induced responses[J]. Journal of Southwest Jiaotong University, 2019, 54(01): 137-144+188. (in Chinese)
    [16] Davenport A G. Gust loading factors [J]. Journal of Structural Division, 1967, 93(ST3): 177-184.
    [17] Nigam N C. Structural optimization in random vibration environment[J]. American Institute of Aeronautics and Astronautics Inc, 1972, 10(4): 551-553.
    [18] Nigam N C. Phase properties of a class of random processes[J]. Earthquake Engineering Structural Dynamics, 1982, 10(5): 711-717.
    [19] 李创第, 杨雪峰, 李宇翔, 等. 带支撑广义Maxwell粘弹性阻尼耗能结构风振响应分析[J]. 计算力学学报, 2024, 41(03): 428-436.Li C D, Yang X F, Li Y X, et al. Wind vibration response analysis of a generalized Maxwell viscoelastic damped energy dissipation structures with supports[J]. Chinese Journal of Computational Mechanics, 2024, 41(03): 428-436. (in Chinese)
    [20] Zhou Y, Gu M, Xiang H F. A long wind static equivalent wind loads and responses of tall buildings. Part II: Effects of mode shapes [J]. Journal of Wind Engineering Industrial Aerodynamics, 1999, 79(1-2): 151-158.
    [21] JCSS-2001 Probabilistic model code-Part 3-Resistance models[S]. Denmark: Joint Committee on Structural Safety, 2001.
    [22] Hu J, Wang J H. First passage dynamic reliability analysis of non-stationary and non-gaussian buffeting random dynamic responses of long-span suspension bridge[J]. International Journal of Structural Stability and Dynamics, 2023, 23(20): 2350199.
    [23] Zhu C, Yang Q S, Wang D H, et al. Fragility analysis of transmission towers subjected to downburst winds[J]. Applied Sciences, 2023, 13(16): 9167.
    [24] 陈保健, 杜轲, 王飞. 钢管混凝土输电塔地震易损性研究[J]. 防灾减灾工程学报, 2024, 44(02): 381-388+425.Chen B J, Du K, Wang F. Study on seismic vulnerability of concrete-filled steel tube transmission towers [J]. Journal of Disaster Prevention and Mitigation Engineering, 2024, 44(02): 381-388+425. (in Chinese)
    [25] Fu X, Li H, Tian L, et al. Fragility analysis of transmission line subjected to wind loading [J]. Journal of Performance of Constructed Facilities, 2019, 33(4), 04019044.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:73
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-11-15
  • 最后修改日期:2024-11-24
  • 录用日期:2025-01-10
文章二维码