混合交通流异常事件下自动驾驶车辆轨迹优化
DOI:
CSTR:
作者:
作者单位:

中国人民公安大学交通管理学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2023YFB4302701)


Optimization of autonomous vehicles trajectories under abnormal events in mixed traffic flow
Author:
Affiliation:

School of Traffic Management, People’s Public Security University of China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对混合交通流中异常事件引发的自动驾驶车辆协同变道效率和安全性失衡问题,本文提出一种基于多智能体决斗双重深度Q网络(MAD3QN)的轨迹优化模型。该模型通过分层奖励机制动态耦合全局交通效率与局部安全指标,结合集中式经验池共享策略消除多车协同中的策略震荡与信息孤岛问题,通过分离状态价值函数与优势函数并引入双重Q学习异步更新机制,模型有效抑制Q值过估计偏差。研究搭建Carla-SUMO联合仿真平台,融合微观驾驶行为建模和物理引擎交互,并标定跟驰模型关键参数;设计事故占道、紧急避障等动态异常场景,填补自动驾驶车辆在非稳态交通流下主动管控的研究空白。实验结果显示,相较于先进基准模型,多智能体决斗双重深度Q网络模型在不同交通流密度下平均奖励值均有显著提升,实现安全性与通行效率的帕累托最优,为异常事件下自动驾驶车辆协同决策提供兼具鲁棒性与泛化能力的创新框架。

    Abstract:

    Aiming at the imbalance between efficiency and safety of cooperative lane changing of self-driving vehicles triggered by abnormal events in mixed traffic flow, this paper proposes a trajectory optimization model based on Multi-Intelligent Dueling Double-Depth Q-Network (MAD3QN). The model dynamically couples global traffic efficiency and local safety indexes through a hierarchical reward mechanism that combines a centralized experience pool-sharing strategy to eliminate strategy oscillations and information silos in multi-vehicle coordination, and the model effectively suppresses Q over-estimation bias by separating the state value function from the dominance function and introducing a dual Q learning asynchronous update mechanism. The study builds a Carla-SUMO joint simulation platform, integrates microscopic driving behavior modeling and physical engine interaction, calibrates the key parameters of the follow-along model; and designs dynamic and abnormal scenarios, such as accidental lane occupancy and emergency obstacle avoidance, to fill in the gap of the research on the active control of self-driving vehicles in unsteady traffic flow. The experimental results show that compared with the advanced benchmark model, the multi-intelligent body dueling double deep Q-network model has significantly improved the average reward value under different traffic flow densities, realizing the Pareto optimization of safety and access efficiency, and providing an innovative framework of both robustness and generalization ability for the collaborative decision-making of self-driving vehicles under abnormal events.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-15
  • 最后修改日期:2025-05-13
  • 录用日期:2025-06-03
  • 在线发布日期:
  • 出版日期:
文章二维码