考虑环境与摩擦因素的工程车辆起步自适应控制策略
作者:
作者单位:

1.重庆大学高端装备机械传动全国重点实验室;2.徐州徐工传动科技有限公司

中图分类号:

U463

基金项目:

国家重点研发计划(2023YFB3406505);江苏省科技成果转化专项资金项目(BA2022033);江苏省双创团队项目(JSSCTD202239)。


Adaptive Starting Control Strategy for Engineering Vehicles Considering Environmental and Friction Factors
Author:
Affiliation:

1.State Key Laboratory of Mechanical Transmissions for Advanced Equipment,Chongqing University;2.Xuzhou XCMG Driveline Technol Co Ltd

Fund Project:

National Key Research and Development Plan(2023YFB3406505),Jiangsu Provincial Science and Technology Achievement Transformation Special Project (BA2022033),Jiangsu Double Innovation Team Project (JSSCTD202239).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    工程车辆在高扭矩、高负载以及复杂运行环境下工作时,面临着诸多技术挑战,特别是在起步阶段,离合器片的滑摩现象显著影响了离合器转矩的控制精度。为实现搭载AMT的工程车辆在不同条件下的起步自适应控制,提出了一种融合二次型控制(linear quadratic regulator,LQR)和深度神经网络的AMT起步过程自适应控制方法。在控制策略的上层,根据不同起步意图制定了发动机恒转速策略,并利用线性二次调节器求得不同环境下的离合器参考转速对应的参考转矩;考虑到运行环境的复杂性,在车辆动力学模型中引入一定范围的扰动,生成一系列参考“状态-动作”参考转速轨迹作为深度神经网络的训练数据集,离线得到鲁棒性较强的数据模型。在控制策略的下层,设计了离合器摩擦因数自适应控制器实时估计离合器的摩擦因数。通过仿真测试验证了搭载AMT的工程车辆起步自适应控制方法有效性。结果表明,在未知摩擦因数变化规律条件下所提方法具有良好的起步性能,能够适应不同的起步意图与行驶环境,相较于工程上常用的PID控制器具有更强的自适应能力和鲁棒性。

    Abstract:

    Engineering vehicles operate under high torque, high load, and complex environmental conditions, facing numerous technical challenges. Particularly during the starting phase, the significant slippage of clutch discs significantly impacts the precision of clutch torque control. Therefore, to achieve adaptive start-up control for AMT engineering vehicles, an adaptive control method combining linear quadratic regulator (LQR)Sand deep neural network was proposed for the AMT start-up process. At the upper level of the control strategy a constant engine speed strategy was formulated based on different starting intentions, and the LQR was used to obtain the reference speed corresponding to the reference torque of the clutch under different environments. Considering the complexity of the operating environment, a certain range of perturbations was introduced into the vehicle dynamics model to generate a series of reference "state-action" speed trajectories as the training data set for the deep neural network, obtained a robust data model offline. At the lower level of the control strategy, a clutch friction factor adaptive controller is designed to estimate the clutch friction factor in real time. Finally, the effectiveness of the adaptive start control method for engineering vehicles equipped with AMT was verified by simulation tests. The results show that the proposed method has good starting performance under the condition of unknown friction coefficients and can adapt to different starting intentions and driving environments. Compared with the PID controller which does not depend on the mechanism model, it has higher adaptive ability and robustness.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-24
  • 最后修改日期:2025-01-03
  • 录用日期:2025-02-24
文章二维码