IGBT器件雪崩失效的温度特性仿真
DOI:
CSTR:
作者:
作者单位:

1.重庆大学输变电装备技术全国重点实验室;2.国网冀北电力有限公司电力科学研究院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家电网有限公司科技项目


Simulation of Temperature Characteristics of Avalanche Failure in IGBT Devices
Author:
Affiliation:

1.State Key Laboratory of Power Transmission Equipment Technology,Chongqing University;2.Electric Power Research Institute,State Grid Jibei Electric Power Co,Ltd Beijing

Fund Project:

State Grid Co.,LTD. Technology project

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    绝缘栅双极晶体管IGBT器件在非钳位感性负载开关(Unclamped Inductive Switching,UIS)过程中会有极高电压和大电流作用于器件,易引发器件雪崩失效,雪崩耐量作为衡量器件承受该极端工况的能力,研究其对器件关断鲁棒性的影响,以指导器件运行可靠性的提升。本文通过理论分析、解析建模与数值仿真分别研究了IGBT器件在过电压和感性负载关断过程的雪崩的失效机理和雪崩鲁棒性。在此基础上研究了温度对动静态雪崩击穿特性的影响。结果表明,动静态雪崩击穿的诱因均为器件内部电场达到雪崩临界击穿电场,触发器件内部载流子的雪崩倍增效应。雪崩倍增效应的发生并不意味着器件失效,但当雪崩电压维持阶段产生的能量大于器件的雪崩耐量后,器件发生损坏性的雪崩击穿失效,器件内部的电流密度分布较失效之前发生变化,寄生晶体管开启,发生门级闩锁现象,器件无法正常关断。温度的升高使雪崩击穿电压升高,雪崩电压维持时间变短,器件雪崩期间的耗散功率增大,雪崩耐量降低,影响器件的关断可靠性。

    Abstract:

    Insulated Gate Bipolar Transistor (IGBT) devices, during the Unclamped Inductive Switching (UIS) process, are subjected to extreme high voltage and large current simultaneously, which can easily lead to avalanche failure. Avalanche ruggedness is a measure of the device’s ability to withstand such extreme conditions. This paper investigates the failure mechanisms and avalanche robustness of IGBT devices under overvoltage conditions, both in static avalanche and dynamic avalanche during the turn-off process, through theoretical analysis, analytical modeling, and numerical simulation. Furthermore, the influence of temperature on the dynamic and static avalanche breakdown characteristics is studied. The results show that the causes of both dynamic and static avalanche breakdown are the internal electric field of the device reaching the avalanche critical breakdown field, triggering the avalanche multiplication effect of internal carriers. The occurrence of avalanche multiplication does not necessarily mean device failure. However, when the energy generated during the avalanche voltage maintenance phase exceeds the device’s avalanche ruggedness, the device undergoes destructive avalanche breakdown failure. The current density distribution inside the device changes compared to before failure, the parasitic transistor turns on, and gate latch-up occurs, making the device unable to turn off normally. Increased temperature leads to a higher avalanche breakdown voltage, shorter avalanche voltage maintenance time, increased power dissipation during avalanche, and reduced avalanche ruggedness, affecting the turn-off reliability of the device.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-12
  • 最后修改日期:2025-06-11
  • 录用日期:2025-06-24
  • 在线发布日期:
  • 出版日期:
文章二维码