储能式虚拟同步铁路功率调节器控制策略
作者:
作者单位:

兰州交通大学 自动化与电气工程学院

中图分类号:

TM922??????

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目);甘肃省自然科学基金重点项目;甘肃省自然科学基金项目


Control Strategy of Energy Storage Virtual Synchronous Railway Power Conditioner
Author:
Affiliation:

School of Automatic Electrical Engineering,Lanzhou Jiaotong University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着新能源发电比例的增加及外部电网低惯量特性愈加显著,传统的牵引供电系统缺乏有效的惯量响应能力,导致牵引供电系统面临频率稳定性挑战。针对上述问题,本文提出一种储能式虚拟同步铁路功率调节器(Energy Storage Based Virtual Synchronous Generator Railway Power Conditioner, ES-VSG-RPC)控制策略。首先,分析ES-RPC动态补偿负序电流和谐波电流的基本原理,研究电流补偿控制策略。接着,根据左右供电臂负荷功率与频率,提出一种计及负荷权重的系统频率,将牵引供电系统等效为单区域供电系统。然后,通过联立同步发电机摇摆方程与超级电容功率方程,利用系统频率控制储能装置的有功功率,模拟同步机惯量响应过程,提出一种ES-VSG的DC-DC控制策略。最后,通过在MATLAB/Simulink中搭建时域仿真模型,验证ES-VSG-RPC控制策略在牵引供电系统典型工况下的有效性。结果表明,ES-VSG-RPC在低惯量牵引供电系统中,既保证电能质量的动态补偿,又能动态控制储能的充放电功率,提高牵引网的频率稳定性,支撑其动态运行。

    Abstract:

    With the increase of the proportion of new energy power generation and the low inertia characteristics of the external power grid, the traditional traction power supply system lacks effective inertia response ability, which leads to the frequency stability challenge of the traction power supply system. In view of the above problems, this paper proposes an energy storage based virtual synchronous generator railway power conditioner (ES-VSG-RPC) control strategy. Firstly, the basic principle of ES-RPC dynamic compensation of negative sequence current and harmonic current is analyzed, and the current compensation control strategy is studied. Then, according to the load power and frequency of the left and right power supply arms, a system frequency considering load weight is proposed, and the traction power supply system is equivalent to a single-area power supply system. Then, by combining the swing equation of synchronous generator and the power equation of super capacitor, the active power of energy storage device is controlled by system frequency, and the inertia response process of synchronous generator is simulated. A DC-DC control strategy of ES-VSG is proposed. Finally, the time domain simulation model is built in MATLAB/Simulink to verify the effectiveness of ES-VSG-RPC control strategy under typical working conditions of traction power supply system. The results show that in the low inertia traction power supply system, ES-VSG-RPC can not only ensure the dynamic compensation of power quality, but also dynamically control the charging and discharging power of energy storage, improve the frequency stability of traction network and support its dynamic operation.

    参考文献
    [1] 魏文婧, 胡海涛, 王科, 等. 基于铁路功率调节器的高速铁路牵引供电系统储能方案及控制策略[J]. 电工技术学报, 2019, 34(06): 1290-1299.Wei W J, Hu H T, Wang K, et al. Energy storage scheme and control strategies of high-speed railway based on railway power conditioner[J]. Transactions of China Electrotechnical Society, 2019, 34(06): 1290-1299.
    [2] 李卫东, 晋萃萃, 温可瑞, 等. 大功率缺失下主动频率响应控制初探[J]. 电力系统自动化, 2018, 42(8): 22-30.Li W D, Jin C C, Wen K R, et al. Active frequency response control under high-power loss[J]. Automation of Electric Power Systems, 2018, 42(8): 22-30.
    [3] Du, P W, Li W F. Frequency Response impact of integration of HVDC into a low-inertia AC power grid[J]. IEEE Transactions on Power Systems: A Publication of the Power Engineering Society, 2021, 36(1): 613-622.
    [4] 史永斌. 基于新型储能式RPC的铁路电能质量治理及能量优化研究[D]. 北京: 北京交通大学, 2023.Shi Y B. Power quality management and energy optimization of novel RPC in electrified railway based on energy storage[D]. Beijing: Beijing Jiaotong University, 2023.
    [5] 叶林, 王凯丰, 赖业宁, 等. 低惯量下电力系统频率特性分析及电池储能调频控制策略综述[J]. 电网技术, 2023, 47(02): 446-464.Ye L, Wang K F, Lai Y N, et al. Review of frequency characteristics analysis and battery energy storage frequency regulation control strategies in power system under low inertia level[J]. Power System Technology, 2023, 47(02): 446-464.
    [6] Mashlakov A, Lensu L, Kaarna A, et al. Probabilistic forecasting of battery energy storage state-of-charge under primary frequency control[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(1): 96-109.
    [7] 张波, 张晓磊, 贾焦心, 等. 基于惯量支撑和一次调频需求的VSG储能单元配置方法[J]. 电力系统自动化, 2019, 43(23): 202-216.Zhang B, Zhang X L, Jia J X, et al. Configuration method for energy storage unit of virtual synchronous generator based on requirements of inertia support and primary frequency regulation[J]. Automation of Electric Power Systems, 2019, 43(23): 202-216.
    [8] 马智慧, 李欣然, 谭庄熙, 等. 考虑储能调频死区的一次调频控制方法[J]. 电工技术学报, 2019, 34(10): 2102-2115.Ma Z H, Li X R, Tan Z X, et al. Integrated control of primary frequency regulation considering dead band of energy storage[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2102-2115.
    [9] Nick J, Janaka E. Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency[J]. IEEE Transactions on Energy Conversion, 2004, 19(4): 800-802.
    [10] Singh K, Zaheeruddin. Enhancement of frequency regulation in tidal turbine power plant using virtual inertia from capacitive energy storage system[J]. Journal of Energy Storage, 2021, 35(6): 102-112.
    [11] Hua Z, Xin W, Wei W, et al. The technology of virtual inertia control considering the state of charge of hybrid energy storage[J]. Journal of Physics: Conference Series, 2024, 2823(1): 012030-012030.
    [12] 鲁宗相, 姜继恒, 乔颖, 等. 新型电力系统广义惯量分析与优化研究综述[J]. 中国电机工程学报, 2023, 43(5): 1754-1776.Lu Z X, Jiang J H, Qiao Y, et al. A review on generalized inertia analysis and optimization of new power systems[J]. Proceedings of the CSEE, 2023, 43(5): 1754-1776.
    [13] 张武其, 文云峰, 迟方德, 等. 电力系统惯量评估研究框架与展望[J]. 中国电机工程学报, 2021, 41(20): 6842-6856.Zhang W Q, Wen Y F, Chi F D, et al. Research framework and prospect on power system inertia estimation[J]. Proceedings of the CSEE, 2021, 41(20): 6842-6856.
    [14] 黄林彬, 辛焕海, 黄伟, 等. 含虚拟惯量的电力系统频率响应特性定量分析方法[J]. 电力系统自动化, 2018, 42(8): 31-38.Huang L B, Xin H H, Huang W, et al. Quantified analysis method of frequency response characteristics for power systems with virtual inertia[J]. Automation of Electric Power Systems, 2018, 42(8): 31-38.
    [15] Yu L L, Wu J F, Cheng Y M, et al. Control strategy for wind farms-energy storage participation in primary frequency regulation considering wind turbine operation state[J]. Energies, 2024, 17(14): 3547-3547.
    [16] 李亚, 陈民铀, 黎博, 等. 基于模糊综合评判的分布式储能系统调节能力分析[J]. 重庆大学学报, 2020, 43(05): 1-10.Li Y, Chen M Y, Li B, et al. Regulating ability analysis of distributed energy storage system based on fuzzy comprehensive evaluation[J]. Journal of Chongqing University, 2020, 43(05): 1-10.
    [17] Luo A, Wu C P, Shen J, et al. Railway static power conditioners for high-speed train traction power supply systems using three-phase V/v transformers[J]. IEEE Transactions on Power Electronics, 2011, 26(10): 2844-2856.
    [18] Teeraphon P, Thunwa B, Komsan H. Enhancing grid stability using a virtual inertia-integrated railway power conditioner in railway power supplies with high renewable energy penetration[J]. IEEE Access, 2024, 12(4): 44841-44857.
    [19] Shintai T, Miura Y, Ise T. Oscillation damping of a distributed generator using a virtual synchronous generator[J]. IEEE Transactions on Power Delivery, 2014, 29(2): 668-676.
    [20] Jin T, Zhang Y C. Coordinated control strategy of a battery energy storage system to support a wind power plant providing multi-timescale frequency ancillary services[J]. IEEE Transactions on Sustainable Energy, 2017, 8(3): 1140-1153.
    [21] 何棒棒, 高志宣, 马超. 一种基于储能系统的混合铁路功率调节器及其控制策略[J]. 电工技术学报, 2021, 36(23): 4905-4915.He B B, Gao Z X, Ma C. A hybrid railway power conditioner based on energy storage system and its control strategy[J]. Transactions of China Electrotechnical Society, 2021, 36(23): 4905-4915.
    [22] 孙伟卿, 尹向阳, 秦艳辉. 基于有效惯量分布的电力系统惯量不足概率评估[J]. 电力自动化设备, 2022, 42(08): 111-118.Sun W Q, Yin X Y, Qin Y H. Probability assessment of power system inertia shortage based on available inertia distribution[J]. Electric Power Automation Equipment, 2022, 42(08): 111-118.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:35
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-12-23
  • 最后修改日期:2025-03-29
  • 录用日期:2025-04-07
文章二维码