混合SiC/Si有源钳位三电平光储功率模块电热优化设计
作者:
作者单位:

重庆大学 输变电装备技术全国重点实验室

中图分类号:

TM464???????

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Electro-Thermal Optimization Design of Hybrid SiC/Si Power Module With Active Clamped Three-Level Topology for Photovoltaic and Energy Storage Applications
Author:
Affiliation:

State Key Laboratory of Power Transmission Equipment Technology,Chongqing University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    得益于高效率优势,混合SiC/Si有源钳位(Active neutral point clamped,ANPC)三电平电路拓扑在光储发电系统中得到广泛应用。然而,对于传统混合SiC/Si功率模块,Si器件的使用限制了效率提升,SiC器件引入后则可能导致热分布不均、电压过冲及振荡等问题。为此,本文提出了一种综合设计方法,考虑功率器件损耗均衡与功率模块布局寄生电感优化,以提高混合SiC/Si ANPC电路拓扑的功率模块性能。首先,建立了功率模块的损耗模型,并进行热性能优化,降低结温与芯片温差。其次,构建了寄生电感模型,通过优化设计减少寄生电感。最后,研制了基于ANPC拓扑的混合SiC/Si功率模块,并进行电热性能测试。实验结果验证了本文功率模块在损耗、寄生电感及热分布方面的显著优势。

    Abstract:

    The Active Neutral Point Clamped (ANPC) three-level circuit topology with hybrid SiC and Si power module is widely used in photovoltaic energy storage systems due to its high efficiency. However, for traditional hybrid SiC/Si power modules, the use of Si devices limits the efficiency improvement, and the introduction of SiC devices may lead to problems such as uneven heat distribution, voltage overshoot and oscillation. To this end, this paper proposes a comprehensive design method that considers power device loss equalization and power module layout parasitic inductance optimization to improve the power module performance of the hybrid SiC/Si ANPC topology. Firstly, the loss model of the power module is established, and the thermal performance is optimized to reduce the junction temperature and chip temperature difference. Secondly, the parasitic inductance model is constructed, and the parasitic inductance is reduced by optimizing the design. Finally, a hybrid SiC/Si power module based on ANPC topology was developed and its electrothermal performance was tested. The experimental results verify the significant advantages of the proposed module in terms of loss, parasitic inductance and heat distribution.

    参考文献
    [1] Chen Z B, Huang A Q. Extreme high efficiency enabled by silicon carbide (SiC) power devices[J]. Materials Science in Semiconductor Processing, 2024, 172: 108052.
    [2] 曾正, 邵伟华, 胡博容, 等. SiC器件在光伏逆变器中的应用与挑战[J]. 中国电机工程学报, 2017, 37(1): 221-233.Zeng Z, Shao W H, Hu B R, et al. Chances and Challenges of Photovoltaic Inverters With Silicon Carbide Devices[J]. Proceedings of the CSEE, 2017, 37(1): 221-233.(in Chinese)
    [3] 王来利, 赵成, 张彤宇, 等. 碳化硅功率模块封装技术综述[J]. 电工技术学报, 2023, 38(18): 4947-4962.Wang L L, Zhao C, Zhang T Y, et al. Review of packaging technology for silicon carbide power modules[J]. Transactions of China Electrotechnical Society, 2023, 38(18): 4947-4962.(in Chinese)
    [4] Belkhode S, Shukla A, Doolla S. A family of Si and SiC devices-based short commutation loop hybrid-NPC rectifiers[J]. IEEE Transactions on Industry Applications, 2024, 60(3): 4899-4909.
    [5] Wang J P, Chen W J, Wang L L, et al. A transient 3-D thermal modeling method for IGBT modules considering uneven power losses and cooling conditions[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 3959-3970.
    [6] 罗丹, 陈民铀, 赖伟, 等. 大功率MMC系统中子模块IGBT状态监测系统设计方法[J]. 重庆大学学报, 2023, 46(11): 102-118.Luo D, Chen M Y, Lai W, et al. Design method of IGBT module condition monitoring system for submodule in high power MMC system[J]. Journal of Chongqing University, 2023, 46(11): 102-118. (in Chinese)
    [7] Zeng Z, Zhang X, Blaabjerg F, et al. Stepwise design methodology and heterogeneous integration routine of air-cooled SiC inverter for electric vehicle[J]. IEEE Transactions on Power Electronics, 2020, 35(4): 3973-3988.
    [8] Mu W, Wang L L, Wang B Y, et al. Direct integration of optimized phase-change heat spreaders into SiC power module for thermal performance improvements under high heat flux[J]. IEEE Transactions on Power Electronics, 2022, 37(5): 5398-5410.
    [9] Kj?rsgaard B F, Liu G, Aunsborg T S, et al. Discovery of loss imbalance in SiC half-bridge power modules–analysis and validations[J]. IEEE Transactions on Power Electronics, 2024, 39(5): 5806-5819.
    [10] 徐盛友, 陈民铀, 冉立, 等. 新能源转换系统功率模块驱动可靠性分析与试验[J]. 重庆大学学报, 2013, 36(10): 42-47.Xu SY, Chen M Y, Ran L, et al. Analysis and experiment for reliability of power module driving circuit in renewable energy conversion system[J]. Journal of Chongqing University, 2013, 36(10): 42-47. (in Chinese)
    [11] Emon A I, Yuan Z, Mirza A B, et al. 1200 V/650 V/160 A SiC Si IGBT 3L hybrid T-type NPC power module with enhanced EMI shielding[J]. IEEE Transactions on Power Electronics, 2021, 36(12): 13660-13673.
    [12] Guan Q X, Li C S, Zhang Y, et al. An extremely high efficient three-level active neutral-point-clamped converter comprising SiC and Si hybrid power stages[J]. IEEE Transactions on Power Electronics, 2018, 33(10): 8341-8352.
    [13] Zhang L, Lou X T, Li C S, et al. Evaluation of different Si/SiC hybrid three-level active NPC inverters for high power density[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 8224-8236.
    [14] Qin Y, Albano B, Spencer J, et al. Thermal management and packaging of wide and ultra-wide bandgap power devices: a review and perspective[J]. Journal of Physics D: Applied Physics, 2023, 56(9): 093001.
    [15] Li Z J, Wang J, Ji B, et al. Power loss model and device sizing optimization of Si/SiC hybrid switches[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 8512-8523.
    [16] Li Z J, Wang J, He Z Z, et al. Performance comparison of two hybrid Si/SiC device concepts[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 42-53.
    [17] Zhang D, He J B, Pan D. A megawatt-scale medium-voltage high-efficiency high power density “SiC Si” hybrid three-level ANPC inverter for aircraft hybrid-electric propulsion systems[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 5971-5980.
    [18] Yuan X B, Laird I, Walder S. Opportunities, challenges, and potential solutions in the application of fast-switching SiC power devices and converters[J]. IEEE Transactions on Power Electronics, 2021, 36(4): 3925-3945.
    [19] He J B, Zhang D, Pan D. PWM strategy for MW-scale “SiC Si” ANPC converter in aircraft propulsion applications[J]. IEEE Transactions on Industry Applications, 2021, 57(3): 3077-3086.
    [20] Huang Z Z, Chen C, Xie Y, et al. A high-performance embedded SiC power module based on a DBC-stacked hybrid packaging structure[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 351-366.
    [21] Chen C, Chen Y, Li Y X, et al. An SiC-based half-bridge module with an improved hybrid packaging method for high power density applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11): 8980-8991.
    [22] Lyu X T, Tian X Y, Li H, et al. Design of a lightweight low inductance power module with ceramic baseplates[C]//2020 IEEE Applied Power Electronics Conference and Exposition (APEC). New Orleans, LA, USA. IEEE, 2020: 2782-2787.
    [23] Yuan Z, Deshpande A, Narayanasamy B, et al. Design and evaluation of A 150 kVA SiC MOSFET based three level TNPC phase-leg PEBB for aircraft motor driving application[C]//2019 IEEE Energy Conversion Congress and Exposition (ECCE). Baltimore, MD, USA. IEEE, 2019: 6569-6574.
    [24] Wang Z J, Wu Y H, Mahmud M H, et al. Busbar design and optimization for voltage overshoot mitigation of a silicon carbide high-power three-phase T-type inverter[J]. IEEE Transactions on Power Electronics, 2021, 36(1): 204-214.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:106
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-12-23
  • 最后修改日期:2025-02-25
  • 录用日期:2025-03-17
文章二维码