考虑车辆静态特征的自动驾驶仿真测试切入场景库生成
DOI:
CSTR:
作者:
作者单位:

1.中国人民公安大学 交通管理学院;2.公安部道路交通安全研究中心

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2023YFB4302701)。


Generation of autonomous driving simulation test cut-in scenario library considering the static characteristics of vehicles
Author:
Affiliation:

1.College of Traffic Management, People’s Public Security University of China;2.Research Institute for Road Safety of the Ministry of Public Security

Fund Project:

Funded by National Key Research and Development Program of China (2023YFB4302701).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为满足自动驾驶仿真测试对测试场景的需求,提出一种考虑切入车辆静态特征的自动驾驶仿真测试场景库生成方法。以高速公路换道切入场景为研究对象,基于highD数据集中的换道切入数据,建立融合切入车辆运动信息与静态特征的切入逻辑场景模型,基于多类别高斯混合模型构建逻辑场景模型参数联合概率密度函数,采用自适应重要性采样(adaptive importance sampling, AIS)作为采样方法,并引入碰撞时间(time to collision, TTC)权重函数,设计场景库生成方法,根据需求生成自动驾驶仿真测试场景库。实验结果显示:相比于传统马尔科夫链蒙特卡洛方法和重要性采样方法,基于AIS的场景库生成方法得到场景参数分布与原始分布的JS散度(jensen-shannon divergence)分别降低65.24%和79.72%,有效测试场景数分别减少96.22%和90.37%,实现了场景信息的高覆盖生成且提高了测试效率;同时通过调整TTC权重函数,实现高风险测试场景的生成比例提高,为自动驾驶强化测试提供足量的高风险场景,满足不同测试需求。

    Abstract:

    To meet the demand for test scenarios in autonomous driving simulation testing, this study proposed a method for generating a simulation test scenario library that considers the static characteristics of cut-in vehicles. This research focused on highway lane-change cut-in scenarios, developing a logical scenario model that integrates motion information and static characteristics of cut-in vehicles, based on lane-change cut-in data from the highD dataset. A multi-class Gaussian mixture model constructed the joint probability density function of the logical scenario model parameters. The adaptive importance sampling (AIS) algorithm was utilized as the sampling method, and a time-to-collision (TTC) weighting function was introduced to formulate the scenario library generation method, which enabled the generation of a simulation test scenario library according to specific requirements. Experimental results indicate that, in comparison to traditional Markov Chain Monte Carlo and importance sampling methods, the AIS-based scenario library generation method achieves a reduction in the jensen-shannon divergence between the scenario parameter distribution and the original distribution by 65.24% and 79.72%, respectively, and results in a reduction in the number of effective test scenarios by 96.22% and 90.37%, respectively. The proposed method ensures comprehensive coverage of scenario generation while enhancing testing efficiency. Moreover, by adjusting the TTC weighting function, the method increases the proportion of high-risk test scenarios, thereby providing an adequate number of high-risk scenarios for autonomous driving testing, fulfilling diverse testing requirements.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-25
  • 最后修改日期:2025-05-08
  • 录用日期:2025-05-12
  • 在线发布日期:
  • 出版日期:
文章二维码