近极限动态可行域约束下永磁伺服电机系统时间最优轨迹规划方法
作者:
作者单位:

重庆大学输变电装备技术全国重点实验室

中图分类号:

TM32???????

基金项目:

国家重点研发计划项目;国家自然科学基金项目


Time-Optimal Trajectory Planning for PMSM Servo Systems under Near-Limit Dynamic Constraints
Author:
Affiliation:

National Key Laboratory of Power Transmission and Distribution Equipment Technology,Chongqing University

Fund Project:

National Key Research and Development Program of China, National Natural Science Foundation of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对永磁同步电机(PMSM)传统伺服轨迹规划方法在额定设计约束下未能充分发挥电机快速性能的问题,提出了一种在短时过载动态可行域约束下的时间最优轨迹规划方法。首先,基于PMSM损耗功率与速度、加速度等运动参数的关系,基于庞特里亚金极大值原理推导电机在伺服运行过程中损耗最低的轨迹方程。然后,考虑PMSM损耗功率(电流)和母线电压约束重构伺服电机系统动态可行域,提出全路程自适应的时间最优轨迹方程系数求解方法。最后,搭建了伺服电机系统实验平台,测试了PMSM在全路程工况下时间最优轨迹的运行状态,对比了弱磁控制下的梯形曲线轨迹的伺服响应速度。实验结果表明,本文提出的轨迹规划方法在不同路程工况下,伺服响应速度均优于传统轨迹规划方法,可节省6.7%到9.05%定位时间。

    Abstract:

    Aiming at the problem that the traditional servo - trajectory planning methods for permanent - magnet synchronous motors (PMSMs) fail to fully utilize the fast performance of the motors under the constraints of rated design, a time - optimal trajectory planning method under the constraints of the short - time overload dynamic feasible region is proposed. Firstly, based on the relationship between the motor"s loss power and motion parameters such as speed and acceleration, the trajectory equation that minimizes the motor"s loss during the servo process is derived using the Pontryagin"s maximum principle. Then, by combining the loss power (current) and bus voltage constraints, the dynamic feasible domain of the servo motor system is reconstructed, and a method for solving the coefficients of the time-optimal trajectory equation that adapts to different angular paths is proposed. Finally, an experimental platform for the servo motor system is set up, and the servo response speeds under the trapezoidal curve trajectory with field-weakening control and the proposed strategy are compared. The experimental results show that the trajectory planning method proposed in this paper outperforms traditional trajectory planning methods in terms of servo response speed under different angular path conditions, saving 6.7% to 9.05% of the positioning time.

    参考文献
    [1] Na J, Ren X M, Herrmann G, et al. Adaptive neural dynamic surface control for servo systems with unknown dead-zone[J]. Control Engineering Practice, 2011, 19(11): 1328-1343.
    [2] Yeh, S. S.; Chang, Y. C. Development of an Extended Proportional–Integral–Proportional Control for Improving Positional Motion Performance of Permanent Magnet Synchronous Motor-Driven Servomechanism[J]. Asian Journal of Control. 2022, 24(1), 1-15.
    [3] Zhu, Z.; Chang, L.; Pan, S. Simulation Research on Ship-borne PMSM Speed Regulation Control System Based on Fuzzy PID Control[J]. Journal of Physics: Conference Series, 2022, 2417, 012036.
    [4] Chen, S.; Xie, P.; Liao, J.; Huang, Z. Model Experimental Studies on Active Heave Compensation Control Strategy for Electric-Driven Offshore Cranes[J]. Ocean Engineering, 2024, 311, Part 2, 118987.
    [5] Soh, C. S.; Bi, C. Sensorless optimal sinusoidal brushless direct current for hard disk drives[J]. Journal of Applied Physics, 2009, 105(7), 07F118.
    [6] Janiszewski, D. Sensorless Model Predictive Control of Permanent Magnet Synchronous Motors Using an Unscented Kalman Filter[J]. Energies, 2024, 17(10), 2387.
    [7] 牛泽农,黄文新,卜飞飞,赵亚俊. 弹性伺服系统高性能位置控制器设计及增益边界分析[J]. 电工技术学报,2025,1-13.NIU Z N,HUANG W X,BU F F,ZHAO Y J. High-performance position controller design and gain boundary analysis for elastic servo systems[J]. Transactions of China Electrotechnical Society,2025,1-13.
    [8] 史婷娜,徐奕扬,谭本慷,颜冬,陈浩,曹彦飞. 机器人关节用伺服电机关键技术与展望[J]. 电工技术学报,2025,1-20.SHI T N,XU Y Y,TAN B K,YAN D,CHEN H,CAO Y F. Key technologies and prospects of servo motors for robot joints[J]. Transactions of China Electrotechnical Society,2025,1-20.
    [9] 肖鑫,孙乐,甘辉. 基于抗扰扩展卡尔曼滤波的摇臂伺服控制[J]. 中国电机工程学报,2023,43(20): 8102-8114.XIAO X,SUN L,GAN H. Swing servo control based on extended Kalman filter with disturbance-rejection[J]. Proceedings of the CSEE,2023,43(20): 8102-8114.
    [10] 胡涛, 申立群, 曹杰铭, 董伟锋, 宁佳意. 电动伺服机构扰动补偿与神经网络模糊控制 [J]. 电机与控制学报, 2023, 27(11): 10-20.HU T, SHEN L Q, CAO J M, DONG W F, NING J Y. Disturbance compensation and neural network fuzzy control of electric servomechanism [J]. Electric Machines and Control, 2023, 27(11): 10-20.
    [11] 赵希梅, 李德豪, 金鸿雁. 基于扰动观测器和改进自适应二阶快速终端滑模的PMLSM伺服系统控制 [J]. 电机与控制学报, 2024, 28(4): 41-49.ZHAO X M, LI D H, JIN H Y. PMLSM servo system control based on disturbance observer and improved adaptive second-order fast terminal sliding mode [J]. Electric Machines and Control, 2024, 28(4): 41-49.
    [12] 赵希梅, 孙洪潇, 金鸿雁. 永磁直线伺服系统终端互补滑模位置控制 [J]. 电机与控制学报, 2023, 27(6): 182-190.ZHAO X M, SUN H X, JIN H Y. Terminal complementary sliding mode position control for permanent magnet linear servo system [J]. Electric Machines and Control, 2023, 27(6): 182-190.
    [13] Dona’, D.; Lenzo, B.; Boscariol, P.; Rosati, G. A Real-Time Capable Method for Planning Minimum Energy Trajectories for One Degree-of-Freedom Mechatronic Systems[J]. Control Engineering Practice 2024,142,105766.
    [14] Wang, Y.; Zhao, Y.; Bortoff, S. A.; Ueda, K. A Real-Time Energy-Optimal Trajectory Generation Method for a Servomotor System[J]. IEEE Transactions on Industrial Electronics. 2015,62 (2),1175–1188.
    [15] O.; Rozkariaka, P. Asymmetric Reference Trajectories for Energy Efficiency Position Electric Drives[C]. 2018 X International Conference on Electrical Power Drive Systems (ICEPDS), Novocherkassk, Russia, 2018.
    [16] Tripathi, S. M.; Dutta, C. Enhanced Efficiency in Vector Control of a Surface-Mounted PMSM Drive[J]. Journal of the Franklin Institute 2018, 355 (5), 2392–2423.
    [17] Inoue, K.; Asano, Y.; Kotera, K.; Kato, T. Optimal Energy Saving Trajectories of Induction Motor with Suppression of Sudden Acceleration and Deceleration[C]. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 2014.
    [18] Chen, H.; Mu, H.; Zhu, Y. Real-Time Generation of Trapezoidal Velocity Profile for Minimum Energy Consumption and Zero Residual Vibration in Servomotor Systems[C]. 2016 American Control Conference (ACC), Boston, MA, USA, 2016.
    [19] Clemen, L.; Rupp, C. J. Single- and Multi-Degree-of-Freedom Servo Trajectory Generation: An Optimization Framework, Implementation, and Examples[C]. 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Seattle, WA, USA, 2023.
    [20] Li, S.; Xu, Y.; Zhang, W.; Zou, J. A Novel Two-Phase Mode Switching Control Strategy for PMSM Position Servo Systems With Fast-Response and High-Precision[J]. IEEE Transactions on Power Electronics. 2023, 38 (1), 803–815.
    [21] Heo, H.-J.; Son, Y.; Kim, J.-M. A Trapezoidal Velocity Profile Generator for Position Control Using a Feedback Strategy[J]. Energies, 2019, 12 (7), 1222.
    [22] Kim, Y.-O.; Ha, I.-J. Time-Optimal Control of a Single-DOF Mechanical System Considering Actuator Dynamics[J]. IEEE Transactions on Control Systems Technology, 2003, 11 (6).
    [23] Zhong, G.; Peng, B.; Dou, W. Kinematics Analysis and Trajectory Planning of a Continuum Manipulator[J]. International Journal of Mechanical Sciences. 2022, 222, 107206.
    [24] Ban, C.; Fu, B.; Wei, W.; Chen, Z.; Guo, S.; Deng, N.; Yuan, L.; Long, Y. A Multi-Objective Trajectory Planning Approach for Vibration Suppression of a Series–Parallel Hybrid Flexible Welding Manipulator[J]. Mechanical Systems and Signal Processing. 2024, 220, 111678.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:39
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2025-02-15
  • 最后修改日期:2025-04-02
  • 录用日期:2025-04-29
文章二维码