未知复杂环境下融合卡尔曼滤波和改进DWA的动态避障方法
作者单位:

陕西科技大学

中图分类号:

TP242???????

基金项目:

陕西省重点研发计划项目(2023-YBGY-277);陕西省重点研发计划项目(2023-YBGY-409);陕西省技术创新引导专项(2023GXLH-071)(Project(2023-YBGY-277)supported by Key Research and Development Program of Shaanxi Province;Project(2023-YBGY-409)supported by Key Research and Development Program of Shaanxi Province;


Dynamic obstacle avoidance method integrating Kalman Filter and improved DWA in unknown complex environments
Author:
Affiliation:

1.Shaanxi University of Science &2.Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对移动机器人在未知复杂环境下难以有效规避动态障碍物的问题,提出了一种融合卡尔曼滤波和改进动态窗口的避障方法。首先,利用卡尔曼滤波算法根据动态障碍物的实时位置信息预测其运动趋势,并结合其实际位置对预测点进行膨胀处理,避免因移动机器人与障碍物预测轨迹交叉而产生碰撞;接着,为解决在避障过程中可能发生的因移动机器人与动态障碍物同步运动而导致的局部最优问题,引入了方向角函数作为新的评价子函数,以提升目标点的对侧轨迹的评分,增加避障方向的选择;此外,针对因权重分配不合理而导致的无法到达目标点或靠近目标点时的轨迹震荡问题,提出根据移动机器人与动态障碍物的角度差,自动调整方向角函数的权值的方法,以适应环境的动态变化。最后,将卡尔曼滤波与改进的动态窗口算法相融合,实现移动机器人事先根据障碍物的运动趋势提前规划运动轨迹,提升避障安全性。仿真和实验运行结果表明,所提算法能够有效避开未知复杂环境中各类动态障碍物并避免陷入动态局部最优。

    Abstract:

    Aiming at the challenge of mobile robots struggling to effectively avoid dynamic obstacles in unknown and complex environments, an obstacle avoidance method that integrates Kalman filtering and an improved Dynamic Window Approach (DWA). First, the Kalman filter algorithm is utilized to predict the motion trends of dynamic obstacles based on real-time position data. The predicted points are then expanded in conjunction with the actual positions of the obstacles, preventing collisions caused by intersections between the robot’s trajectory and the predicted obstacle path. Next, to address the local optimal problem that may arise when the robot and dynamic obstacles move synchronously during avoidance, a new evaluation function based on the angular direction is introduced. This function improves the scoring of the opposite side of the target trajectory, providing more options for avoidance directions. Additionally, to overcome the issue of trajectory oscillation near the target point due to unreasonable weight distribution, an adaptive method is proposed to automatically adjust the weight of the angular direction function based on the angle difference between the robot and dynamic obstacles, thereby adapting to environmental dynamic changes. Finally, the fusion of Kalman filtering with the improved DWA enables the mobile robot to plan its motion trajectory in advance based on the predicted motion trends of obstacles, enhancing the safety of obstacle avoidance. Simulation and experimental results demonstrate that the proposed algorithm can effectively avoid various dynamic obstacles in unknown and complex environments and prevent the robot from becoming trapped in dynamic local minima.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-17
  • 最后修改日期:2025-02-24
  • 录用日期:2025-03-24
文章二维码