考虑新能源消纳的废弃矿井压缩空气储能双层容量优化配置模型
作者:
作者单位:

1.重庆大学输变电装备技术全国重点实验室;2.国网重庆市电力公司电力科学研究院

中图分类号:

TM73

基金项目:

国网重庆市电力公司电力科学研究院科学技术项目(SGCQDK00SBJ2200311)。


A two-layer capacity optimization configuration model for compressed air energy storage in abandoned mines considering new energy consumption
Author:
Affiliation:

1.State Key Laboratory of Power Transmission Equipment Technology,Chongqing University;2.State Grid Chongqing Electric Power Research Institute

Fund Project:

Supported by State Grid Chongqing Electric Power Research Institute

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在“双碳”目标驱动下,针对风、光等新能源消纳难题与废弃矿井资源化利用需求,本文提出一种考虑新能源消纳的废弃矿井压缩空气储能双层容量优化配置方法。区别于传统基于巷道空间静态确定容量的模式,该研究兼顾经济性与新能源消纳,为废弃矿井储能系统容量规划提供了一种解决方案。该双层容量优化配置模型由规划层及运行层组成,规划层以综合经济性最优为目标,运行层以系统新能源消纳率最高为目标,规划层与运行层上下互动,互相迭代,并通过改进的粒子群算法对该模型进行求解并得到最优配置方案。基于改进IEEE33节点系统的多场景仿真表明,相比传统固定容量配置,所提模型在4种典型场景下新能源消纳率平均提升6.53%,总成本降低45.45%,验证了该模型在提升新能源消纳能力与经济性方面的有效性。

    Abstract:

    Driven by the "dual-carbon" goals, this study proposes a two-layer capacity optimization configuration method for compressed air energy storage in abandoned mines, addressing the challenges of new energy consumption and the resource utilization demand of abandoned mines. Unlike traditional static capacity determination based solely on mine roadway space, this research balances economy and new energy consumption, providing a solution for energy storage system planning in abandoned mines. The proposed two-layer optimization model consists of a planning layer and an operation layer. The planning layer aims for comprehensive economic optimality, while the operation layer focuses on maximizing the system’s new energy consumption rate. These two layers interact iteratively, and the model is solved using an improved particle swarm optimization algorithm to obtain the optimal configuration scheme. Multi-scenario simulations based on the improved IEEE 33-node system show that, compared with the traditional fixed capacity configuration, the proposed model increases the new energy absorption rate by an average of 6.53% and reduces the total cost by 45.45% in four typical scenarios, verifying the effectiveness of the model in improving the new energy absorption capacity and economy.

    参考文献
    [1] 文云峰, 杨游航, 邢鹏翔, 等. 多维因素制约下新能源消纳能力评估方法研究综述[J]. 中国电机工程学报, 2024, 44(1):127-146.Wen Y F, Yang Y H, Xing P X, et al. Review on the new energy accommodation capability evaluation methods considering multi-dimensional factors[J]. Proceedings of the CSEE, 2024, 44(1):127-146. (in Chinese)
    [2] 赵同彬, 刘淑敏, 马洪岭, 等. 废弃煤矿压缩空气储能研究现状与发展趋势[J]. 煤炭科学技术, 2023, 51(10): 163-176.Zhao T B, Liu S M, Ma H L, et al. Research status and development trend of compressed air energy storage in abandoned coal mines[J]. Coal Science and Technology, 2023, 51(10): 163-176. (in Chinese)
    [3] 刘笑驰, 梅生伟, 丁若晨, 等. 压缩空气储能工程现状、发展趋势及应用展望[J]. 电力自动化设备, 2023, 43(10): 38-47, 102.Liu X C, Mei S W, Ding R C, et al. Current situation, development trend and application prospect of compressed air energy storage engineering projects[J]. Electric Power Automation Equipment, 2023, 43(10): 38-47, 102. (in Chinese)
    [4] Yu Q H, Wang Q C, Tan X, et al. A review of compressed-air energy storage[J]. Journal of Renewable and Sustainable Energy, 2019, 11(4): 042702.
    [5] 钟伟杰, 唐俊杰, 孙青, 等. 计及压缩空气储能的发输电系统可靠性评估[J]. 电力系统自动化, 2023, 47(8): 145-155.Zhong W J, Tang J J, Sun Q, et al. Reliability evaluation of power generation and transmission system considering compressed air energy storage[J]. Automation of Electric Power Systems, 2023, 47(8): 145-155. (in Chinese)
    [6] 张玮灵, 古含, 章超, 等. 压缩空气储能技术经济特点及发展趋势[J]. 储能科学与技术, 2023, 12(4): 1295-1301.Zhang W L, Gu H, Zhang C, et al. Technical economic characteristics and development trends of compressed air energy storage[J]. Energy Storage Science and Technology, 2023, 12(4): 1295-1301. (in Chinese)
    [7] Zhang X J, Gao Z Y, Zhou B Q, et al. Advanced compressed air energy storage systems: fundamentals and applications[J]. Engineering, 2024, 34: 246-269.
    [8] Wu F, Liu Y, Gao R B. Challenges and opportunities of energy storage technology in abandoned coal mines: a systematic review[J]. Journal of Energy Storage, 2024, 83: 110613.
    [9] Menéndez J, Loredo J. Integration of renewable energies in the electricity grid from energy storage plants in disused mining structures[J]. IOP Conference Series: Materials Science and Engineering, 2019, 643: 12104.
    [10] Bu X B, Huang S H, Liu S, et al. Efficient utilization of abandoned mines for isobaric compressed air energy storage[J]. Energy, 2024, 311: 133392.
    [11] He W, Luo X, Evans D, et al. Exergy storage of compressed air in cavern and cavern volume estimation of the large-scale compressed air energy storage system[J]. Applied Energy, 2017, 208: 745-757.
    [12] 尹斌鑫, 苗世洪, 李姚旺, 等. 考虑变寿命特性的先进绝热压缩空气储能电站容量规划模型[J]. 电工技术学报, 2020, 35(3): 612-622.Yin B X, Miao S H, Li Y W, et al. A capacity planning model of advanced adiabatic compressed air energy storage plant considering lifetime varying characteristic[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 612-622. (in Chinese)
    [13] Yu Q H, Tian L, Li X D, et al. Compressed air energy storage capacity configuration and economic evaluation considering the uncertainty of wind energy[J]. Energies, 2022, 15(13): 4637.
    [14] 李广阔, 陈来军, 谢毓广, 等. 考虑压缩空气储能变工况特性的风储联合系统运行优化策略[J]. 高电压技术, 2020, 46(2): 511-518.Li G K, Chen L J, Xie Y G, et al. Coordinated optimization strategies of wind-storage hybrid system considering off-design characteristics of compressed air energy storage[J]. High Voltage Engineering, 2020, 46(2): 511-518. (in Chinese)
    [15] Zhang W, Li J B, Yao Y C, et al. Capacity configuration of compressed air energy storage systems with consideration of variable operating conditions[J]. Journal of Physics: Conference Series, 2024, 2840(1): 012001.
    [16] 崔杨, 于一凡, 付小标, 等. 考虑多热源协同互补的含先进绝热压缩空气储能系统容量配置方法[J]. 电网技术, 2024, 48(10): 4195-4208.Cui Y, Yu Y F, Fu X B, et al. A capacity allocation method for advanced adiabatic compressed air energy storage systems considering the synergistic complementarity of multiple heat sources[J]. Power System Technology, 2024, 48(10): 4195-4208. (in Chinese)
    [17] Tian Y N, Zhang T, Xie N N, et al. Conventional and advanced exergy analysis of large-scale adiabatic compressed air energy storage system[J]. Journal of Energy Storage, 2023, 57: 106165.
    [18] Han Z H, Sun Y, Li P. Research on energy storage operation modes in a cooling, heating and power system based on advanced adiabatic compressed air energy storage[J]. Energy Conversion and Management, 2020, 208: 112573.
    [19] 任智君, 郭红霞, 杨苹, 等. 含高比例可再生能源配电网灵活资源双层优化配置[J]. 太阳能学报, 2021, 42(9): 33-38.Ren Z J, Guo H X, Yang P, et al. Double-layer optimal configuration of flexible resources with high proportion of renewable energy distribution network[J]. Acta Energiae Solaris Sinica, 2021, 42(9): 33-38. (in Chinese)
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
相关视频

分享
文章指标
  • 点击次数:55
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2025-02-17
  • 最后修改日期:2025-03-13
  • 录用日期:2025-04-29
文章二维码