含局部温度场扰动的半平面接触问题算法研究
作者:
作者单位:

重庆大学航空航天学院

中图分类号:

O343.1??????????????????

基金项目:

国家自然科学基金(52205192; 51875059)


Semi-Plane Contact Analyses Considering Localized Temperature Change
Author:
Affiliation:

college of areospace engineering,Chongqing university

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在材料接触问题中,次表面局部温度场扰动会导致材料局部应力梯度的变化,这种变化显著影响材料的接触性能和服役寿命。实际工程材料中的局部温度场扰动区域往往呈现为含光滑曲边或尖锐角的不规则形状,难以通过解析方法求解。本文基于第一类奇异积分方程,提出了一种用于求解与刚性圆形压头无摩擦接触的含温度场扰动区域的半平面内部应力的算法。与有限元相比,该算法仅需对接触区域进行离散,可显著提升计算效率。通过与经典的赫兹(Hertz)解进行对比,验证了次表面局部温度场扰动对接触区域的显著影响。以与刚性压头接触的含矩形、圆形温度场扰动区域的半平面基体为例,将本文方法的计算结果与有限元计算结果进行对比,进一步证明了该算法的准确性和高效性。

    Abstract:

    In material contact problems, localized subsurface temperature change can lead to changes in the stress gradient, which significantly affect the contact performance and service life of the material. In practical engineering materials, regions of localized temperature change often exhibit irregular shapes with smooth curved edges or sharp corners, pose substantial challenges for analytical solutions. This paper presents an algorithm based on singular integral equation of the first kind to solve the frictionless contact of a half-plane with a localized subdomain, subjected to temperature change, with a rigid circular punch. Compared to the finite element method, this work only requires discretization of the contact region, thereby significantly enhancing computational efficiency. By comparing with the classical Hertzian solution, the noted effect of localized subsurface temperature change on the contact region is verified. Taking a half plane with rectangular or circular temperature rise regions in contact with a rigid punch as examples, the computational results of current method are compared with those of the finite element method, which further demonstrate the accuracy and efficiency of the algorithm.

    参考文献
    [1] Zhang X S, Chen Y J, Hu J L. Recent advances in the development of aerospace materials[J]. Progress in Aerospace Sciences, 2018, 97: 22-34.
    [2] 蔡杨, 王正武, 王欢, 等. 混合动力汽车湿式离合器摩擦副温度场及其影响因素研究[J]. 重庆大学学报, 2024, 47(01): 93-103.Cai Y, Wang Z W, Wang H, et al. Temperature field and its influencing factors of friction pair of wet clutch of hybrid electric vehicle[J]. Journal of Chongqing University, 2024, 47(01): 93-103. (in Chinese)
    [3] Weertman J. Dislocation based fracture mechanics[M]. World Scientific, 1996.
    [4] Nenashev A V, Koshkarev A A, Dvurechenskii A V. Approximate analytical description of the elastic strain field due to an inclusion in a continuous medium with cubic anisotropy[J]. Journal of Applied Physics, 2018, 123(10): 105104.
    [5] Nazarenko L, Stolarski H, Altenbach H. Thermo-elastic properties of random composites with unidirectional anisotropic short-fibers and interphases [J]. European Journal of Mechanics a-Solids, 2018, 70: 249-266.
    [6] Mura T, Barnett D M. Micromechanics of defects in solids, F, 1982[C].
    [7] Thornton P A. The influence of nonmetallic inclusions on the mechanical properties of steel: A review[J]. Journal of Materials Science, 1971, 6(4): 347-356.
    [8] Eshelby J. D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proceedings of the Royal Society of London, 1957, 241(1226): 376-396.
    [9] Chiu Y P. On the stress field due to initial strains in a cuboid surrounded by an infinite elastic space[J]. Journal of Applied Mechanics, 1977, 44: 587-590.
    [10] Chiu Y P. On the stress field and surface deformation in a half space with a cuboidal zone in which initial strains are uniform[J]. Journal of Applied Mechanics, 1978, 45(2): 302-306.
    [11] Liu S B, Jin X Q, Wang Z J, et al. Analytical solution for elastic fields caused by eigenstrains in a half-space and numerical implementation based on FFT[J]. International Journal of Plasticity, 2012, 35: 135-154.
    [12] Ru C Q. Analytic solution for Eshelby's problem of an inclusion of arbitrary shape in a plane or half-plane[J]. Journal of Applied Mechanics-Transactions of the Asme, 1999, 66(2): 315-322.
    [13] 谢东东, 金晓清, 蒋志桢, 等. 弹性半平面矩形夹杂基本单元解及其应用[J]. 重庆大学学报, 2022, 45(12): 26-35.Xie D D, Jin X Q, Jiang Z Z, et al. Elementary solution of the elastic half-plane containing a rectangular inclusion:theory and applications[J]. Journal of Chongqing University, 2022, 45(12): 26-35. (in Chinese)
    [14] Eshelby J D. The elastic field outside an ellipsoidal inclusion[J]. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1959, 252(1271): 561-569.
    [15] Jin X Q, Keer L M, Wang Q. A closed-form solution for the Eshelby tensor and the elastic field outside an elliptic cylindrical inclusion[J]. Journal of Applied Mechanics-Transactions of the Asme, 2011, 78(3).
    [16] Jin X Q, Zhang X N, Li P, et al. On the displacement of a two-dimensional Eshelby inclusion of elliptic cylindrical shape[J]. Journal of Applied Mechanics-Transactions of the Asme, 2017, 84(7).
    [17] Ouhiba S, Wiskel J B, Ivey D G, et al. The effect of non-metallic inclusion morphology on the hydrogen induced cracking (HIC) resistance of L80 steel[J]. Journal of Materials Research and Technology, 2023, 24: 780-794.
    [18] 唐东, 王宝君. JS600索氏体不锈钢板带冷弯裂断原因分析[J]. 甘肃冶金, 2024, 46(2): 108-111.Tang D, Wang B J. JS600 sostenitic stainless steel strip cold bending fracture analysis[J]. Gansu Metallurgy, 2024, 46(2): 108-111. (in Chinese)
    [19] Nakai Y, Shiozawa D, Kikuchi S, et al. Inclusion orientation dependent flaking process in rolling contact fatigue observed by laminography using ultrabright synchrotron radiation X‐ray[J]. Fatigue & Fracture of Engineering Materials & Structures, 2022, 45(8): 2200-2214.
    [20] Zdero R, Brzozowski P, Schemitsch E H. Experimental methods for studying the contact mechanics of joints[J]. BioMed Research International, 2023, 2023(1): 4914082.
    [21] 党晓勇, 师志峰, 刘静. 圆柱滚子轴承次表面裂纹区域应力分布规律研究[J]. Journal of Mechanical & Electrical Engineering, 2023, 40(2): 8.Dang X Y, Shi Z F, Liu J. Stress distribution law in subsurface crack region of cylindrical roller bearing[J]. Journal of Mechanical & Electrical Engineering, 2023, 40(2): 8. (in Chinese)
    [22] 王嘉豪. 含夹杂物的有限体非弹性接触力学性能研究[D]. 陕西; 西安理工大学, 2023.Wang J H. Study on inelastic contact mechanics of finite body with inclusions[D].Shanxi; Xi'an University of Technology, 2023. (in Chinese)
    [23] Gopalakrishnan R M, Waele W D, Nikolic K, et al. Numerical modelling of rolling contact fatigue damage initiation from non-metallic inclusions in bearing steel[J]. Tribology International, 2023, 180: 108290.
    [24] Sedmak A. Fatigue crack growth simulation by extended finite element method: A review of case studies[J]. Fatigue & Fracture of Engineering Materials & Structures, 2024, 47(6): 1819-1855.
    [25] Johnson K L. Contact mechanics[M]. Cambridge: Cambridge University Press, 2012.
    [26] Hills D A, Nowell D, Sackfield A. Mechanics of elastic contacts, F, 1993[C].
    [27] Erdogan F, Gupta G D. On the numerical solution of singular integral equations[J]. Quarterly of Applied Mathematics, 1973, 29(4): 525-534.
    [28] 陈楠, 朱凯, 蒋志桢, 等. 接触问题的三角形载荷离散FFT加速算法[J]. 重庆大学学报, 2024, 47(02): 95-105.Chen N, Zhu K, Jiang Z Z, et al. FFT acceleration algorithm for contact problems based on triangular element discretization[J]. Journal of Chongqing University, 2024, 47(02): 95-105. (in Chinese)
    [29] 刘俊, M.Borodich F, 吕鼎, 等. 双材料含椭圆热夹杂的平面应变问题解析解[J]. 重庆大学学报: 1-13.Liu J, M.Borodich F, Lyu D, et al. A closed-form solution to an elliptic cylindrical thermal inclusion in a bi-material under plane strain[J]. Journal of Chongqing University: 1-13. (in Chinese)
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:72
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2025-02-18
  • 最后修改日期:2025-03-13
  • 录用日期:2025-03-31
文章二维码