激光维持高气压氙气等离子体的时空动态光谱诊断研究
作者:
作者单位:

重庆大学输配电装备及系统安全与新技术国家重点实验室

中图分类号:

TM213????

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)(11975061, 52111530088)


Spatio-temporal dynamic spectral diagnostic study of laser-sustained high-pressure xenon plasma
Author:
Affiliation:

State Key Laboratory of Power Transmission Equipment and System Security and New Technology,Chongqing University

Fund Project:

The National Natural Science Foundation of China (11975061, 52111530088)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    激光维持等离子体(Laser-Sustained Plasma, LSP)通过逆轫致吸收机制实现无电极能量耦合,具备宽光谱范围、高亮度和长寿命的优势,在半导体晶圆缺陷检测领域得到了广泛应用。为进一步明确LSP的微观物理机制,通过高速成像与光谱诊断技术,系统研究了高气压氙气LSP的动态演变规律及其电子参数的空间分布。结果表明:等离子体形态随激光功率增加呈现轴向扩展主导的“水滴状”演化;等离子体质心的位置及强度在特定频率发生振荡,且随着激光功率的增加,振荡频率逐渐降低;当激光功率从60 W增加到120 W时,等离子体核心区域的电子密度和电子温度分别增加34.2%和4.3%,但是随着激光功率的进一步增加,电子参数呈现饱和趋势,甚至略有减小。

    Abstract:

    Laser-Sustained Plasma (LSP) has been widely used in semiconductor wafer defect detection by realizing electrode-free energy coupling through the inverse bremsstrahlung absorption mechanism, which has the advantages of wide spectral range, high brightness and long lifetime. To further clarify the microphysical mechanism of LSP, the dynamic evolution law of high-pressure xenon LSP and the spatial distribution of its electronic parameters were systematically investigated by high-speed imaging and spectral diagnostic techniques. The results show that the plasma morphology shows axial expansion dominated “droplet-like” evolution with the increase of laser power. The position and intensity of plasma centroid oscillate at a specific frequency, and the frequency of the oscillation decreases with the increase of laser power. The electron density and electron temperature in the plasma core region increase by 34.2% and 4.3% with the laser power increasing from 60W to 120 W, respectively. However, the electron parameters show a saturating trend or even a slight decrease with further increase in laser power.

    参考文献
    [1] Sah K, Halder S, Cross A, et al. Inspection of stochastic defects with broadband plasma optical systems for extreme ultraviolet (EUV) lithography[J]. IEEE Transactions on Semiconductor Manufacturing, 2020, 33(1): 23-31.
    [2] Wu P H, Hoang T P, Chou Y T, et al. Elevating Wafer Defect Inspection with Denoising Diffusion Probabilistic Model[J]. Mathematics, 2024, 12(20): 3164.
    [3] Lee H, Sung J, Park S, et al. Lens-free reflective topography for high-resolution wafer inspection[J]. Scientific Reports, 2024, 14(1): 10519.
    [4] Lu K, Wang Z, Chun H, et al. Wafer Edge Metrology and Inspection Technique Using Curved-Edge Diffractive Fringe Pattern Analysis[J]. Journal of Manufacturing Science and Engineering, 2024, 146(7).
    [5] Bezel I, Delgado G, Derstine M, et al. High power laser-sustained plasma light sources for KLA-Tencor broadband inspection tools[C]// 2015 Conference on Lasers and Electro-Optics (CLEO) . IEEE, 2015: 1-2.
    [6] Bol'shakov A P, Konov V I, Vostrikov V G, et al. Study of the optical-discharge plasma in multicomponent mixtures of molecular gases[J]. Quantum Electronics, 2008, 38(2): 165.
    [7] 王大智, 袁博文, 卢琪, 等. 高气压激光维持氩等离子体实验与仿真[J]. 电工技术学报, 2023, 38(9): 2541-2554.Wang D Z, Yuan B W, Lu Q, et al. Experimental and Computational Study of Laser-Maintained Argon Plasma under High Pressure[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2541-2554. (in Chinese)
    [8] Generalov N A, Zimakov V P, Kozlov G I, et al. Continuous optical discharge[J]. Soviet Journal of Experimental and Theoretical Physics Letters, 1970, 11: 302.
    [9] Raizer Y P. Subsonic propagation of a light spark and threshold conditions for the maintenance of plasma by radiation[J]. Sov. Phys. JETP, 1970, 31(6): 1148-1154.
    [10] Franzen D L. Continuous laser-sustained plasmas[J]. Journal of Applied Physics, 1973, 44(4): 1727-1732.
    [11] Carlhoff C, Krametz E, Schäfer J H, et al. Continuous optical discharges at very high pressure[J]. Physica B+ C, 1981, 103(2-3): 439-447.
    [12] Horne S, Smith D, Besen M, et al. A novel high-brightness broadband light-source technology from the VUV to the IR[C]// Next-Generation Spectroscopic Technologies III . SPIE, 2010, 7680: 105-111.
    [13] Zimakov V P, Kuznetsov V A, Solovyov N G, et al. Interaction of near-IR laser radiation with plasma of a continuous optical discharge[J]. Plasma Physics Reports, 2016, 42: 68-73.
    [14] Shi Z, Yang S, Yu F, et al. Investigation of the laser-sustained plasma of a Xenon lamp driven by an annular beam[J]. Optics Express, 2023, 31(4): 6132-6142.
    [15] Hu Y, Wang X, Zuo D. Research of continuous fiber laser sustained Xe plasma[J]. Vacuum, 2022, 203: 111229.
    [16] Burm K. Continuum radiation in a high pressure argon-mercury lamp[J]. Plasma Sources Science and Technology, 2004, 13(3): 387.
    [17] Iordanova E, De Vries N, Guillemier M, et al. Absolute measurements of the continuum radiation to determine the electron density in a microwave-induced argon plasma[J]. Journal of Physics D: Applied Physics, 2007, 41(1): 015208.
    [18] Vitel Y, Siyacoun A, Giry L, et al. The continuum absorption of argon, krypton and xenon dense plasmas produced in flashlamps[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 1993, 26(22): 4333.
    [19] Goldbach C, Nollez G, Stuck D. Investigation of the continuous radiation of a high-pressure xenon arc plasma[J]. Journal of Physics B: Atomic and Molecular Physics, 1976, 9(7): 1191.
    [20] D'yachkov L G, Kurilenkov Y K, Vitel Y. Radiative continua of noble gas plasmas[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1998, 59(1-2): 53-64.
    [21] Yeates P. Biberman ‘free-bound’continuum correction factor approximation for line-to-continuum temperature diagnostic of aluminium laser plasma[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44(7): 075002.
    [22] Frost L S, Phelps A V. Momentum-transfer cross sections for slow electrons in He, Ar, Kr, and Xe from transport coefficients[J]. Physical Review, 1964, 136(6A): A1538.
    [23] Itikawa Y. Momentum-transfer cross sections for electron collisions with atoms and molecules[J]. Atomic data and nuclear data tables, 1974, 14(1): 1-10.
    [24] McEachran R P, Stauffer A D. Momentum transfer cross sections for the heavy noble gases[J]. The European Physical Journal D, 2014, 68: 1-8.
    [25] Androsenko V N, Kotov M A, Solovyov N G, et al. Properties of a continuous optical discharge sustained by short-wave infrared laser radiation in high pressure argon[J]. Journal of Physics D: Applied Physics, 2024, 57(47): 475203.
    [26] Zeng X, Mao X, Mao S S, et al. Laser-plasma interactions in fused silica cavities[J]. Journal of applied physics, 2004, 95(3): 816-822.
    [27] Kunze H J. Introduction to plasma spectroscopy[M]. Springer Science & Business Media, 2009.
    [28] Akarapu R, Nassar A R, Copley S M, et al. Numerical model of a laser-sustained argon plasma[J]. journal of Laser Applications, 2009, 21(4): 169-175.
    [29] Kotov M A, Lavrentyev S Y, Shemyakin A N, et al. Oscillations of convective flow around a continuous optical discharge in high-pressure xenon[J]. Plasma Sources Science and Technology, 2022, 31(12): 124002.
    [30] Cristoforetti G, De Giacomo A, Dell'Aglio M, et al. Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2010, 65(1): 86-95.
    [31] Hu Y, Wang X, Zuo D. Optical emission spectroscopy of fiber laser sustained Xe plasma[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2024, 212: 106843.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:74
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2025-02-22
  • 最后修改日期:2025-04-22
  • 录用日期:2025-04-22
文章二维码