特斯拉电动汽车碳化硅MOSFET失效机制分析
作者:
作者单位:

重庆大学 输变电装备技术全国重点实验室


Failure mechanism analysis of silicon carbide MOSFETs in Tesla electric vehicles
Author:
Affiliation:

State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Chongqing 400044, P. R. China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    碳化硅金属-氧化物-半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)的阈值电压分散漂移严重影响了其在应用中的可靠性。特斯拉Model3召回事件中表明“后电机逆变器功率半导体元件”可能存在“微小的制造差异”,部分车辆使用“一段时间后”元件制造差异可能会导致后逆变器发生故障,造成逆变器不能正常控制电流。文中针对该召回事件从器件本体和电路回路参数差异两个方面展开系统性研究,器件的本体差异可能会导致阈值电压分散性随着应力时间的延长而增大,进而使分流恶化,电路中驱动回路和主回路的寄生电感差异也会导致分流恶化。研究表明,器件本体和电路回路参数差异都能通过对阈值漂移分散性的影响引起分流恶化,进而导致系统故障。

    Abstract:

    The dispersive threshold voltage drift in silicon carbide metal-oxide-semiconductor field-effect transistors (MOSFETs) severely impacts their reliability in applications. The Tesla Model 3 recall incident highlighted that the "rear motor inverter power semiconductor components" might have "minor manufacturing variations," which could lead to inverter failure over time, resulting in the inverter"s inability to control current properly. This paper conducts a systematic study on the recall event from two perspectives: device intrinsic differences and circuit loop parameter variations. The intrinsic differences in devices may cause the threshold voltage dispersion to increase with prolonged stress time, thereby exacerbating current sharing issues. Additionally, variations in parasitic inductance in the drive and main circuits can also worsen current sharing. The research demonstrates that both device intrinsic differences and circuit loop parameter variations can influence the threshold voltage drift dispersion, leading to deteriorated current sharing and ultimately causing system failures.

    参考文献
    [1] 钱照明, 盛况. 大功率半导体器件的发展与展望[J]. 大功率变流技术, 2010, 403(01): 1-9.Qian Z M, Sheng K. The Development and Prospect of High power Semiconductor Devices [J]. High power Converter Technology, 2010, 403 (1): 1-9.
    [2] Ning P, Lei T G, Wang F, et al. A Novel High-Temperature Planar Package for SiC Multi-Chip Phase-Leg Power Module[C]. 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, 2009: 2061-2067.
    [3] J. Millán, P. Godignon, X. Perpi?à, et al. "A Survey of Wide Bandgap Power Semiconductor Devices," IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2155-2163, May 2014.
    [4] 庄桂元,张兴,刘威,等. 带飞跨电容的三电平拓扑中SiC MOSFET过电压与过电流保护[J]. 电工技术学报,2021,36(2):341-351.Zhuang G Y, Zhang X, Liu W, et al. Overvoltage and overcurrent protection of SiC MOSFET in three-level topology with flying capacitor[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 341-351.
    [5] 余宝伟,郭希铮,部旭聪,等. 全碳化硅辅助变流器功率回路振荡问题[J]. 电工技术学报,2021,36(增刊2):619-626.Yu B W, Guo X Z, Bu X C, et al. Oscillation of power circuit of full SiC auxiliary converter[J]. Transactions of China Electrotechnical Society, 2021, 36(Supplement 2): 619-626.
    [6] Tang L, Jiang H P, Liao R J, et al. Analyzing the Changes in the Third Quadrant Characteristics of SiC MOSFET Induced by Threshold Drift[J]. IEEE Transactions on Electron Devices, 2024, vol. 71, no. 4, pp. 2342-2348.
    [7] 柯俊吉. 碳化硅MOSFET 芯片并联电气特性及其调控方法研究[D]. 北京:华北电力大学(北京),2020.Ke J J. Electrical characteristics and its control method of paralleled silicon carbide MOSFET chips[D]. Beijing, China: North China Electric Power University (Beijing), 2020.
    [8] 特斯拉中国. Model 3 后电机逆变器安全更新[EB/OL]. https://www.tesla.cn/support/model-3-rear-motor-inverter-safety-updateTesla China. Model 3 rear motor inverter security update [EB/OL]. https://www.tesla.cn/support/model-3-rear-motor-inverter-safety-update
    [9] 江芙蓉, 杨树, 盛况. 碳化硅MOSFET特征参数随温度变化的比较研究[J]. 电源学报, 2018, 16(06): 143-151.Jiang F R, Yang S, Sheng K. Comparative Study on the Temperature - dependent Characteristics of SiC MOSFET Parameters [J]. Journal of Power Supply, 2018, 16 (6): 143 - 151.
    [10] Tang L, Jiang H P, Liao R J, et al. Impact of the Threshold Dispersity Evolution on the Current Sharing of Parallel SiC MOSFETs[J]. IEEE Transactions on Power Electronics, 2024, 39(5): 6312-6326.
    [11] Rohm. SiC Power Devices and Modules Application Note[R]. Kyoto, Japan: ROHM Co., Ltd., 2014.
    [12] Lelis A J, Green R, Habersat D B, et al. Basic Mechanisms of Threshold-Voltage Instability and Implications for Reliability Testing of SiC MOSFETs[J]. IEEE Transactions on Electron Devices, 2015, 62(2): 316-323.
    [13] Lelis A J, Habersat D B, Green R, et al. Temperature-Dependence of SiC MOSFET Threshold-Voltage Instability[C]. Materials Science Forum, 2009, 600-603: 807-810.
    [14] Li H, Beczkowski S, Munk-Nielsen S, et al. Circuit Mismatch and Current Coupling Effect Influence on Paralleling SiC MOSFETs in Multichip Power Modules[C]. International Exhibition and Conference for Power Electronics, 2015: 1-8.
    [15] 修强. SiC MOSFET器件并联均流问题研究[D]. 南京航空航天大学, 2020.Xiu Q. Research on Current-sharing of Parallel SiC MOSFET Devices [D]. Nanjing University of Aeronautics and Astronautics, 2020.
    [16] STMicroelectronics. SiC power modules for your electric vehicle designs [EB/OL]. https://www.st.com/content/dam/pcim-2020/presentations/stmicroelectronics-pcim2020-sic-power-modules-for-your-electric-vehicle-designs.pdf
    [17] Tang L, Jiang H P, Zhong X H, et al. Influence of Mismatched Gate Loop Inductance on Threshold Dispersity Evolution and Current Sharing of Parallel SiC MOSFETs[J]. IEEE Transactions on Power Electronics, 2025, Early Access, DOI: 10.1109/TPEL.2025.3531515.
    [18] 汤磊. 动态阈值漂移诱导的碳化硅MOSFET并联分流演化及其抑制方法研究[D]. 重庆:重庆大学,2024.Tang L. Current Sharing Evolution of Silicon Carbide MOSFET Induced by Dynamic Threshold Drift and Suppression Methods[D]. Chongqing: Chongqing University, 2024.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:27
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2025-02-25
  • 最后修改日期:2025-04-18
  • 录用日期:2025-05-22
文章二维码