融合多源异构数据的CPE顶管机轧制电耗预测分析
作者:
作者单位:

1.西安建筑科技大学 建筑设备科学与工程学院;2.西安建筑科技大学 信息与控制工程学院;3.中冶京诚数科公司;4.西安建筑科技大学 信息与控制工程学院

基金项目:

国家自然科学基金面上项目(52278125)


Fusion of Multi-Source Heterogeneous Data for Power Consumption Prediction and Analysis of CPE Push Bench Mill Machine
Author:
Affiliation:

1.Xi'2.'3.an University of Architecture and Technology, School of Architectural Equipment Science and Engineering;4.an University of Architecture and Technology, School of Information and Control Engineering;5.MCC Jingcheng Digital Technology Co., Ltd;6.Xi&7.amp;8.#39;9.&10.Xi'an University of Architecture and Technology

Fund Project:

National Natural Science Foundation of China (NSFC) General Program (52278125)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在热轧无缝钢管CPE顶管生产过程中,顶管机的能耗管理面临挑战,主要源于设备和工艺等多源异构数据的特征信息提取困难,进而影响电耗预测的准确性。针对高维、非线性和时变特征的电耗预测问题,本文提出了一种融合多源异构数据的预测模型。该模型首先结合卷积神经网络(CNN)进行空间特征提取。接着,采用Transformer编码器对时序特征建模。最后,通过交叉注意力机制(CA)实现数据融合。通过对实际生产中的历史数据进行预处理、特征提取与融合,建立了电耗回归预测模型。实验结果表明,所提出的模型在预测精度上显著优于传统方法,决定系数(R2)超过98%。该研究为CPE顶管机能耗管理提供了有效的技术支持,具有较高的工程应用价值。

    Abstract:

    In the hot rolling process of seamless steel pipes, the energy consumption management of the CPE push bench mill faces challenges, primarily due to the difficulty in extracting feature information from multi-source heterogeneous data such as equipment and process parameters, which in turn affects the accuracy of power consumption prediction. To address the issue of high-dimensional, nonlinear, and time-varying features in power consumption prediction, this paper proposes a prediction model that integrates multi-source heterogeneous data. The model first combines Convolutional Neural Networks (CNN) for spatial feature extraction. Then, a Transformer encoder is used for modeling temporal features. Finally, the data fusion is achieved through a Cross-Attention mechanism (CA). By preprocessing, feature extraction, and fusion of historical data from actual production, a power consumption regression prediction model is established. Experimental results show that the proposed model significantly outperforms traditional methods, with the coefficient of determination (R2) exceeding 98%. This research provides effective technical support for the energy consumption management of the CPE push bench mill and has high engineering application value.

    参考文献
    Liu X, Li J, Bai C, et al. Optimum low-carbon transformation pathways of China''s iron and steel industry towards carbon neutrality based on a dynamic CGE model[J]. Energy,2024,313134023-134023.
    李慧斌.Φ219 CPE机组关键设备应用研究[J].山西冶金,2021,44(05):11-14.
    Li H B. Research on application of key equipment of Φ219 CPE unit[J]. Shanxi Metallurgy, 2021, 44(05): 11-14.
    Zhao S, Grossmann E I, Tang L. Integrated scheduling of rolling sector in steel production with consideration of energy consumption under time-of-use electricity prices[J]. Computers and Chemical Engineering,2018,111,55-65.
    林利红,李雨龙,李聪波,等.工业电阻炉多参数能耗建模与预测[J].重庆大学学报,2021,44(02):107-119.
    Lin L H, Li Y L, Li C B, et al. Multi-parameter energy consumption modeling and prediction of industrial resistance furnaces [J]. Journal of Chongqing University, 2021, 44(02冲): 107-119.
    李一恒,孙抗,赵来军.基于Stacking集成学习的无缝钢管连轧电耗预测[J].电子测量技术,2024,47(08):53-60.
    Li Y H, Sun K, Zhao L J. Prediction of power consumption of seamless steel pipe continuous rolling based on Stacking ensemble learning[J] Electronic Measurement Technology,2024,47(08):53-60.
    王文汇,赵宪明,张令华,等.基于深度学习的棒材轧机电机负荷预测模型[J].冶金自动化,2023,47(02):82-88.
    Wang W H, Zhao X M, Zhang L H et al. Motor load prediction model for bar rolling mill based on deep learning[J]. Metallurgical Automation, 2023, 47(02): 82-88.
    肖世钊,刘天恒,张飞,等.基于卷积神经网络与长短期记忆网络的多规格带钢精轧电耗分析预测[J].冶金自动化,2022,46(01):25-33.
    Xiao S Z, Liu T H, Zhang F, et al. Analysis and prediction of power consumption of multi-specification strip finishing based on convolutional neural network and long short-term memory network[J]. Metallurgical Automation,2022,46(01):25-33.
    Tak Y K, Jun B K, Woo S K. Multi-Level Stacked Regression for predicting electricity consumption of Hot Rolling Mill[J].Expert Systems With Applications,2022,201.
    DONG Xiao, WANG Jichun. Modeling and Optimization for Piercing Efficiency and Energy Consumption Based on Mean Value Sub staged KELM-PLS and GA Method[J]. Mathematical Problems in Engineering,2014,20141-12.
    王斌,李凯,纪召红,等.基于组合算法的轧钢厂电耗预测[J].冶金自动化,2022,46(04):72-77.
    Wang B, Li K, Ji Z H, et al. Power consumption prediction of rolling mill based on combination algorithm [J] Metallurgical Automation,2022,46(04):72-77.
    冯敏,陆军,丁进良.基于多源异构数据的厚板板形质量预测[J].控制工程, 2024,01(63)1-9.
    Feng M, Lu J, Ding J L. Prediction of plate shape quality of thick plates based on heterogeneous data from multiple sources[J]. Control Engineering, 2024,01(63)1-9.
    屠佳琪,张华,常晓洁,等.融合注意力的异构信息网络嵌入学习综述[J].计算机科学与探索, 2024,07(07) 1-37.
    Tu J Q, Zhang H, Chang X J et al. A review of embedded learning in heterogeneous information networks incorporating attention[J]. Computer Science and Exploration, 2024,07(07) 1-37.
    王汝英,马嘉骏,董建强,等.基于MTS-BiGRU-DMHSA的工业负荷预测方法[J].计算机工程,2024,50(09):169-178.
    Wang R Y, Ma J J, Dong J Q,et al . An industrial load forecasting method based on MTS-BiGRU-DMHSA[J]. Computer Engineering,2024,50(09):169-178.
    魏立新,王恒,孙浩,等.基于改进深度信念网络训练的冷轧轧制力预报[J].计量学报,2021,42(07):906-912.
    Wei L X, Wang H, Sun H,et al. Prediction of Cold Rolling Force Based on Improved Deep Belief Network Training [J]. Acta Metrologica Sinica, 2021, 42(07): 906-912.
    金梅,李媛媛,郝兴军,等.基于非对称增强注意力与特征交叉融合的行人重识别方法[J].计量学报,2022,43(12):1573-1580.
    Jing M, Li Y Y, Hao X J, et al. Pedestrian Re-Identification Method Based on Asymmetric Enhanced Attention and Feature Cross-Fusion [J]. Acta Metrological Sinical, 2022, 43(12): 1573-1580.
    闫秀英,门琪,吴晓雪.跨建筑短期负荷预测的深度迁移学习方法[J].电力系统及其自动化学报,2024,09(02)1-10.
    Yan X Y, Men Q, WU X X. A Deep Transfer Learning Method for Short-Term Load Forecasting Across Buildings [J]. Journal of Power Systems and Automation, 2024, 09(02)1-10.
    张明,牛国伟,黄自豪,等.基于迁移学习和多方面特征提取的冷轧轧制力预测[J].锻压技术,2024,(06):141-148.
    Zhang M, Niu G W, Huang Z H, et al. Cold rolling force prediction based on transfer learning and multi-faceted feature extraction [J]. Forging Technology, 2024, (06):141-148.
    王清华,加世滢,胡建华,等. 基于GRA的PSO-BP神经网络斜轧穿孔管形预测[J].锻压技术,2022,47(08):88-94.
    Wang Q H, Jia S Y, Hu J H, et al. Prediction of pipe shape in cross-rolled piercing by PSO-BP neural network base on GRA[J]. Forging Stamping Technology, 2022,47(08):88-94.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-26
  • 最后修改日期:2025-05-06
  • 录用日期:2025-05-12
文章二维码