一种基于变分推断和AutoFormer优化的驾驶姿态舒适性算法
作者:
作者单位:

重庆大学大数据与软件学院

中图分类号:

TP391???????


Zhao Yang12 , Hu Chunqiang1,Ma Muchen12
Author:
Affiliation:

1.CHONGQING CHANGAN AUTOMOBILE Co., Ltd;2.School of Big Data &3.Software Engineering, Chongqing University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对传统的舒适性评估方法依赖于主观问卷难以满足实时性和客观性需求的问题,提出了一种融合变分推断和AutoFormer+的舒适性预测方法,实现对驾驶人舒适度的实时、客观的评估。基于变分推断的舒适性预测方法以脑电信号和坐姿关节角为输入,坐姿舒适度主观评分为标签,AutoFormer+算法通过引入频域增强模块,对注意力模块进行优化,完成对驾驶人脑电数据的舒适度分类。该方法在实车静态测试数据集上进行了实验,所提出的算法在舒适度分类任务上取得了优于传统方法的性能,精确率达0.95,较基线模型提升0.5%。

    Abstract:

    In order to solve the problem that the traditional comfort evaluation method relies on subjective questionnaires to meet the needs of real-time and objectivity, a comfort prediction method integrating variational inference and AutoFormer+ was proposed to realize the real-time and objective evaluation of driver"s comfort. The comfort prediction method based on variational inference takes the EEG signal and sitting joint angle as inputs, and the subjective score of sitting comfort as the label, and the AutoFormer+ algorithm optimizes the attention module by introducing the frequency domain enhancement module to complete the comfort classification of the driver"s EEG data. In this paper, experiments are carried out on the static test dataset of real vehicles, and the proposed algorithm achieves better performance than the traditional method in the comfort classification task, with an accuracy of 0.95, which is 0.5% higher than that of the baseline model.

    参考文献
    [1] Ganguly A , Jain S , Watchareeruetai U .Amortized Variational Inference: A Systematic Review[J].Journal of Artificial Intelligence Research, 2023, 78.DOI:10.1613/jair.1.14258.
    [2] PENG Shiweisup/sup 彭诗玮,ZHANG Xisup/sup 张希,ZHU Wangwangsup /sup朱旺旺,等.融合乘客感受量化指标的智能汽车舒适性研究[J].上海交通大学学报(英文版), 2024, 29(6):1063-1070.DOI:10.1007/s12204-022-2531-5.
    [3] 陈景辉,任金东,陆善彬,等.驾驶员姿势舒适性评价的研究[J].汽车工程, 2013, 35(6):6.DOI:10.3969/j.issn.1000-680X.2013.06.014.
    [4] Altaheri H , Muhammad G , Alsulaiman M ,et al.Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review[J].Neural Computing Applications, 2023, 35(20).DOI:10.1007/s00521-021-06352-5.
    [5] Wu H , Xu J , Wang J ,et al.Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting[J].? 2021.DOI:10.48550/arXiv.2106.13008.
    [6] Kingma D P , Welling M .Auto-Encoding Variational Bayes[J].arXiv.org, 2014.DOI:10.48550/arXiv.1312.6114.
    [7] Lopez R , Boyeau P , Yosef N ,et al.Decision-Making with Auto-Encoding Variational Bayes[J].? 2020.DOI:10.48550/arXiv.2002.07217.
    [8] Yamanashi T, Kajitani M, Iwata M, et al. Topological data analysis (TDA) enhances bispectral EEG (BSEEG) algorithm for detection of delirium[J]. Scientific reports, 2021, 11(1): 304.
    [9] Liu L, Chen W, Cao G. Prediction of neonatal amplitude-integrated EEG based on LSTM method[C]//2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2016: 497-500.
    [10] Zhang S, Wu L, Yu S, et al. An Explainable and Generalizable Recurrent Neural Network Approach for Differentiating Human Brain States on EEG Dataset[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022.
    [11] Zhou T, Ma Z, Wen Q, et al. Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting[C]//International Conference on Machine Learning. PMLR, 2022: 27268-27286.
    [12] Zhou H, Zhang S, Peng J, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the AAAI conference on artificial intelligence. 2021, 35(12): 11106-11115.
    [13] Wang H, Yang J, Kou W, et al. Sparsenet: Deep convolutional network with sparse connections between blocks[C]//ICMLCA 2021; 2nd International Conference on Machine Learning and Computer Application. VDE, 2021: 1-5.
    [14] Gemein L A W, Schirrmeister R T, Chrab?szcz P, et al. Machine-learning-based diagnostics of EEG pathology[J]. NeuroImage, 2020, 220: 117021.
    [15] Wilson AG,IzmailovP. Bayesian deep learning and a probabilistic perspective of gener alization[C]. Annual Conference on Neural Information Processing Systems (NeurIPS). 2020: 4697–4708
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:19
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2025-03-04
  • 最后修改日期:2025-05-10
  • 录用日期:2025-06-03
文章二维码