面向复杂施工场景的基于改进YOLOv8轻量化安全帽佩戴检测算法
DOI:
CSTR:
作者:
作者单位:

1.长电张掖能源发展有限公司;2.中国电建集团西北勘测设计研究院有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:

甘肃张掖抽水蓄能电站智能建造平台建设(一期)科研项目


Improved Yolov8 Lightweight Helmet Wearing Detection Algorithm Based on Improved YOLOv8 for Complex Construction Scenarios
Author:
Affiliation:

1.Changdian (Zhangye) Energy Development Co., Ltd.;2.Power China Northwest Survey Design and Research Institute Co. ,Ltd.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    安全帽对施工人员安全至关重要,但施工人员仍存在未全程佩戴安全帽的现象。目前的安全帽检测算法在复杂施工场景中存在计算复杂度高、检测精度低的问题,因此急需一种能实时高精度检测复杂施工场景安全帽佩戴的方法。本文提出了一种基于改进 YOLOv8 的轻量化安全帽检测算法,首先用 MobileNetv4 替换 YOLOv8 主干网络,保留 SPPF 部分;其次在颈部网络中以 GSconv 替代传统深度可分离卷积,用 GhostNet 替代 CSP 网络层,融合 GhostBottleneck 与 C2f 模块,并引入 SENet 优化 C2f;最后在头部网络中引入 EMA 模块。实验表明,与 Faster R-CNN、YOLOv5s 等六大主流模型相比,改进后的 YOLOv8 模型在准确率、召回率、平均精度均值、计算量和帧率等多方面提升明显,准确率达到90.12%、召回率为89.27%、平均精度均值84.28%,满足工地施工人员安全要求,适用于实际复杂的施工环境,大大提高了施工安全。

    Abstract:

    Safety helmets are crucial to the safety of construction workers, However, there is still a phenomenon that the construction workers do not wear safety helmets all the time.Current helmet detection algorithms have the problems of high computational complexity and low detection accuracy in complex construction scenarios, so there is an urgent need for a real-time high-precision method to detect helmet wearing in complex construction scenarios.In this paper, we propose a lightweight helmet detection algorithm based on the improved YOLOv8, which firstly replaces the YOLOv8 backbone network with MobileNetv4 and retains the SPPF part; secondly, replaces the traditional depth-separable convolution with GSconv in the neck network, replaces the CSP network layer with GhostNet, and fuses the GhostBottleneck and C2f modules, and introduces the S2f module.C2f module and introduce SENet to optimise C2f; finally, the EMA module is introduced in the head network.The experiments show that compared with the six models such as Faster R-CNN and YOLOv5s, the improved YOLOv8 model improves significantly in terms of accuracy, recall, mean average precision, computation volume and frame rate, etc. The accuracy rate of 90.12%, the recall rate of 89.27%, and the mean average precision value of 84.28% meet the requirements of safety for construction workers on construction sites, and it is suitable for the actual construction sites.environment, improving construction safety.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-06
  • 最后修改日期:2025-05-31
  • 录用日期:2025-06-16
  • 在线发布日期:
  • 出版日期:
文章二维码