School of Bigdata and Software Engineering, Chongqing University 在期刊界中查找 在百度中查找 在本站中查找
Affiliation:
School of Bigdata and Software Engineering, Chongqing University
Fund Project:
The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)
摘要
|
图/表
|
访问统计
|
参考文献 [24]
|
相似文献
|
引证文献
|
资源附件
|
文章评论
摘要:
现代车辆日益自动化,其内部CAN(Controller Area Network)网络虽提供了连接性,但也为网络攻击提供了机会。车辆安全是研究车辆的一个基本问题,而只有对攻击的影响足够了解,才能研究出更加具有针对性的保护措施,才能更好地保护车辆安全。研究针对如何量化评估攻击对汽车信息物理系统网络层影响的问题,提出了一种基于子系统的网络攻击影响评估模型,该模型从可用性和完整性两个维度衡量攻击对子系统总线和节点的影响。攻击实验中采用该模型计算了攻击影响,验证了该模型的有效性,能够对攻击影响进行量化评估。
Modern vehicles are becoming increasingly automated, and while their internal CAN network provides connectivity, it also offers opportunities for cyber attacks. Vehicle safety is a fundamental issue in the study of vehicles, and only with sufficient understanding of the impact of attacks can more targeted protective measures be developed to better protect vehicle safety. A subsystem based network attack impact assessment model is proposed to quantitatively evaluate the impact of attacks on the CPS network layer of automobiles. This model measures the impact of attacks on subsystem buses and nodes from two dimensions: availability and integrity. The model was used in the attack experiment to calculate the impact of the attack, verifying its effectiveness and enabling quantitative evaluation of the impact of the attack.
[1] 聂枝根, 沈澳, 王万琼, 等. 考虑参数摄动的智能汽车动态侧向避障鲁棒控制策略[J].重庆大学学报, 2023, 46(3): 103-117.Nie Z G, Shen A, Wang W Q, et al. Robust control strategy for dynamic lateral obstacle avoidance of intelligent vehicle considering parameter perturbation[J]. Journal of Chongqing University, 2023, 46(3): 103-117.S
[2] Greenberg A. Hackers remotely kill a jeep on the highway—with me in it[J].Wired, 2015,7:21-22.
[3] Checkoway S, McCoy D, Kantor B, et al. Comprehensive experimental analyses of automotive attack surfaces[J].Proceedings USENIX Security Symposium,2011,4:447-462.
[4] 王勇,李亚菲,陈雪鸿,等.电动汽车CAN协议的重放攻击与防御方法[J].上海电力学院学报, 2021, 37(4):037.Wang Y, Li Y F, Chen X H, et al. Replay attacks and defense methods of CAN protocol for electric vehicles [J]. Journal of Shanghai Electric Power University, 2021,4:037.
[5] 赵丽,孙敏.基于CAN的现代车辆入侵检测[J].计算机应用与软件, 2024, 41(2):328-332.Zhao L, Sun M. Modern vehicle intrusion detection based on CAN [J]. Computer Applications and Software, 2024, 41 (2): 328-332.
[7] Haridasu R, Shaik N, Chinnadurai S. Bluetooth Based Vehicle to Vehicle Communication to Avoid Crash Collisions and Accidents[C]//2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). India:IEEE, 2021: 1-5.
[8] Mishra A K, Tripathi N, Vaqur M, et al. Artificial Intelligence based Security Solution for Data Encryption using AES Algorithm[C]//2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS). India:IEEE, 2023: 1685-1690.
[9] Yang Z, Shi Q, Cheng T, et al. QBMA-BIV: Quantum-Key-Distribution (QKD)-Based multi-server authentication scheme for blockchain-enabled internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2024,25(11):18433-18448.S
[10] Xiao J, Chen H and Zhong F, A novel feature extraction framework using graph node attention network for in-vehicle networks intrusion detection[J]. IEEE Systems Journal,2024,18(1):150-161.
[11] Singh N, Agarwal R. Intrusion Detection System for Smart Vehicles Using Machine Learning Algorithms[C]//2023 International Conference on Communication, Security and Artificial Intelligence (ICCSAI). India:IEEE, 2023: 749-753.
[12] Rezaei S, Masoud N and Khojandi A, GAAD: GAN-enabled autoencoder for real-time sensor anomaly detection and recovery in autonomous driving[J]. IEEE Sensors Journal,2024,24(7):11734-11742.
[13] 谢浒,莫秀良,王春东.基于机器学习的车载CAN网络入侵检测研究[J].天津理工大学学报, 2020, 36(2):6.Xie H, Mo X L, Wang C D. Research on Intrusion Detection of Vehicle CAN Network Based on Machine Learning[J]. Journal of Tianjin University of Technology,2020,36(2):6.
[14] 叶丹,靳凯净,张天予.网络攻击下的信息物理系统安全性研究综述[J].控制与决策, 2023, 38(8):2243-2252.Ye D, Jin K J, Zhang T Y.A review of research on the security of cyber physical systems under network attacks[J]. Control and Decision, 2023, 38 (8): 2243-2252.
[15] 张淇瑞,孟思琪,王兰豪,等.隐蔽攻击下信息物理系统的安全输出反馈控制[J].自动化学报, 2024, 50(7):1363-1372.Zhang Q R, Meng S Q, Wang L H, et al. Security output feedback control of cyber physical systems under covert attacks[J]. Journal of Automation, 2024, 50 (7): 1363-1372.
[16] Yu Z, Gao H, Cong X, et al. A survey on cyber–physical systems security[J]. IEEE Internet of Things Journal,2023,10(24):21670-21686.
[17] 彭飞,田增垚,张晓华,等.基于量子安全的电力信息系统安全增强方法研究[J].重庆大学学报,2024,47(2):62-74.Peng F, Tian Z Y, Zhang X H, et al. Research on the security enhancement for power information systems based on quantum security[J].Journal of Chongqing University,2024,47(02):62-74.
[18] Luo F, Chen J, Chen J, et al. Controller area network development for a Fuel Cell Vehicle[C]//2009 IEEE Vehicle Power and Propulsion Conference. USA:IEEE, 2009: 1712-1715.
[19] Liu C, Du D, Zhang C, et al. Observability Analysis of Networked Control Systems Under DoS Attacks[C]//IECON 2023-49th Annual Conference of the IEEE Industrial Electronics Society. Singapore:IEEE, 2023: 1-6.
[20] 周艳华.信息可用性:洞察信息安全最重要的属性[J].中国宽带, 2022, 18(12):126-128.Zhou Y H. Information availability: insight into the most important attribute of information security[J]. China Broadband, 2022, 18 (12): 126-128.
[21] Yang Z, Ying J, Shen J, et al. Anomaly detection against GPS spoofing attacks on connected and autonomous vehicles using learning from demonstration[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(9):9462-9475.
[22] Jin Z, Ji X, Cheng Y, et al. Pla-lidar: Physical laser attacks against lidar-based 3d object detection in autonomous vehicle[C]//2023 IEEE Symposium on Security and Privacy (SP). USA:IEEE, 2023: 1822-1839.
[23] 徐会彬, 方龙, 张莎. 车联网中基于 stacking 集成学习的攻击检测模型[J]. 电信科学, 2024, 40(12): 38-50.Xu H B, Fang L, Zhang S. Attack detection model based on stacking ensemble learning in the Internet of Vehicles[J]. Telecommunication Science,2024,40(12):38-50.
[24] 周家顺, 王娜, 杜学绘. 基于区块链的数据完整性多方高效审计机制[J]. 网络与信息安全学报, 2021, 7(6): 113-125.Zhou J S, Wang N, Du X H. Multi party efficient audit mechanism for data integrity based on blockchain[J]. Journal of Network and Information Security,2021,7(6):113-125.