基于车辆纵横耦合动力学特性的轨迹跟踪研究
DOI:
CSTR:
作者:
作者单位:

1.电子科技大学自动化工程学院;2.重庆长安汽车软件科技有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on trajectory tracking based on the dynamic characteristics of vehicle vertical and horizontal coupling
Author:
Affiliation:

1.School of&2.amp;3.#160;4.Automation Engineering, University of&5.Electronic Science and&6.Technology of&7.China;8.ChongQing Changan Automotive Software Technology Co., Ltd

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    自动驾驶汽车的轨迹跟踪与车辆运动控制密切相关,决定着汽车能否有效地跟随决策层的规划指令,并根据车辆的动力学特性,正确的输出驱动与转向执行机构的控制指令。建立二自由度车辆动力学模型,利用模型预测控制(MPC)在复杂非线性、多约束环境中的适应性,提出基于纵横耦合动力学的双层模型预测控制架构,其中上层控制器对纵向速度与加速度的精确调节,确保车辆沿期望速度轨迹运行;下层控制器对横向轨迹跟踪,通过精确控制前轮转角,实现车辆行驶路径的高效控制。构建车辆典型绕障场景进行仿真测试,所提出的策略与经典的比例-积分-微分(PID)控制和线性二次型调节器(LQR)控制进行仿真与试验对比分析,结果表明,所提出的策略在不同场景下表现出更加精确和稳定的控制性能,能够提升自动驾驶汽车轨迹跟踪精度、优化控制平稳性及提高车辆适应复杂交通场景的能力。

    Abstract:

    The trajectory tracking of autonomous vehicles is closely related to vehicle motion control, which determines whether the vehicle can effectively follow the planning instructions of the decision-making layer and correctly output the control instructions of the drive and steering actuators according to the dynamic characteristics of the vehicle. A two-degree-of-freedom vehicle dynamics model was established, and a model predictive control architecture based on vertical and horizontal coupling dynamics was proposed by using the adaptability of Model Predictive Control (MPC) in a complex nonlinear and multi-constraint environment, in which the upper-level controller accurately adjusted the longitudinal speed and acceleration to ensure that the vehicle ran along the expected speed trajectory. The lower controller tracks the lateral trajectory and realizes the efficient tracking and control of the planned path of the vehicle by accurately controlling the front wheel rotation angle. The common obstacle bypass scenarios of automobiles are set up for simulation tests, and the proposed strategy is compared with the classical Proportional-Integral-Derivative (PID) and Linear Quadratic Regulator (LQR) controls, and the real vehicle experiments are carried out. The results show that the proposed strategy shows more stable and accurate control performance in different scenarios, which can improve the trajectory tracking accuracy of autonomous vehicles, optimize the control smoothness and improve the ability of vehicles to adapt to complex traffic scenarios.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-25
  • 最后修改日期:2025-05-09
  • 录用日期:2025-05-21
  • 在线发布日期:
  • 出版日期:
文章二维码