水中微间隙重频短脉冲放电机理及影响因素
作者:
作者单位:

1.重庆大学 a.输变电装备技术全国重点实验室 b.超瞬态实验室;2.重庆大学 a.输变电装备技术全国重点实验室;3.重庆大学 输变电装备技术全国重点实验室

基金项目:

国家自然科学基金青年科学基金项目(52007018);河钢集团有限公司横向科研项目(H20241067)


Mechanism and Influencing Factors of Repetitive Short-Pulse Discharge in Water Micro-Gap
Author:
Affiliation:

1.a. State Key Laboratory of Power Transmission Equipment Technology, b. Laboratory for Ultrafast Transient Facility, Chongqing University;2.State Key Laboratory of Power Transmission Equipment Technology, Chongqing University

Fund Project:

Youth Science Fund Project of National Natural Science Foundation of China (52007018); Horizontal Research Project of HBIS Group Co., Ltd. (H20241067)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    采用高速摄影与电气参数同步测量技术,探究了棒-棒电极结构在水介质中的重频放电演化特性。研究发现,放电过程可分为液相扰动发展、气泡群落演变、击穿与气泡脉动三个典型阶段。液相扰动在电场与焦耳热作用下向间隙中央扩展;微气泡形成膨胀后溃灭为气泡群落;放电优先在气泡内部发生,击穿后气泡呈“膨胀-溃灭-再膨胀”的脉动特性。实验表明,放电电压(4-8kV)、脉宽(2-12μs)和脉冲频率(20-2000Hz)均与间隙等效电阻演化速率及重频耐受次数呈显著负相关。放电电压的提高加速了液相扰动扩展;脉宽增加延长了能量注入时间,促进了扰动相气泡的生成;高频条件促进热量与微气泡在间隙累积,加速击穿过程,而低频条件因水介质充分恢复而抑制了累积效应。

    Abstract:

    Using high-speed photography and synchronized electrical parameter measurements, we investigated the repetitive discharge evolution characteristics of rod-rod electrode structures in water. The research revealed that the discharge process divides into three typical stages: liquid phase disturbance development, bubble colony evolution, and breakdown with bubble pulsation. Liquid phase disturbances expand toward the gap center under electric field and Joule heating effects; micro-bubbles form, expand, and then collapse into bubble colonies; discharge preferentially occurs inside bubbles, and after breakdown, bubbles exhibit "expansion-collapse-re-expansion" pulsation characteristics. Experiments show that discharge voltage (4-8kV), pulse width (2-12μs), and pulse frequency (20-2000Hz) all correlate negatively with the evolution rate of gap equivalent resistance and repetitive pulse withstand times. Higher discharge voltage accelerates liquid phase disturbance expansion; increased pulse width extends energy injection time and promotes bubble generation in the disturbed phase; high-frequency conditions promote heat and micro-bubble accumulation in the gap and accelerate the breakdown process, while low-frequency conditions inhibit cumulative effects due to complete recovery of the water medium.

    参考文献
    [1] Zhang L C, Fu Q H, DingS D, et al. Influence of discharge polarity on the dynamics of spark-induced bubble in saline water[J]. Applied Physics Letters, 2023, 123(5): 054101.
    [2] Park S, Choe W, Lee H, et al. Stabilization of liquid instabilities with ionized gas jets[J]. Nature, 2021, 592(7852): 49-53.
    [3] Liu Z, Guan X T, Zhang L C, et al. Investigations of dynamics of a single spark-induced bubble in saline water[J]. Journal of Physics D: Applied Physics, 2020, 54(7): 075203.
    [4] Liu W J, Zhang Y J, Zhu X H, et al. The influence of pore characteristics on rock fragmentation mechanism by high-voltage electric pulse[J]. Plasma Science and Technology, 2023, 25(5): 055502.
    [5] Han R Y, Li C, Yao W B, et al. Electrical explosion in confined space: From warm dense matter to fragmentation[J]. Physics of Fluids, 2022, 34(8): 087108.
    [6] Yu Q, Zhang H, Yang R Z, et al. Experimental and numerical study on the effect of electrohydraulic shock wave on concrete fracturing[J]. Journal of Petroleum Science and Engineering, 2022, 215: 110685.
    [7] Belov A, Vasilyev A, Dorokhov A, et al. Effect of high-voltage spark discharges on reduction of the concentration of total bacterial count in wastewater[J]. Journal of Water Process Engineering, 2022, 45: 102465.
    [8] Kassimis G, Didagelos M, De Maria G L, et al. Shockwave Intravascular Lithotripsy for the Treatment of Severe Vascular Calcification[J]. Angiology, 2020, 71(8): 677-688.
    [9] Brinton T J, Ali Z A, Hill J M, et al. Feasibility of Shockwave Coronary Intravascular Lithotripsy for the Treatment of Calcified Coronary Stenoses[J]. Circulation, 2019, 139(6): 834-836.
    [10] Li X D, He H, Xiao T F, et al. Pre-breakdown processes in water under ultra-long pulses: Bubble–streamer dynamics and their transition[J]. Physics of Fluids, 2021, 33(10): 107102.
    [11] Li Y, Wen J Y, Huang Y F, et al. Streamer-to-spark transitions in deionized water: unsymmetrical structure and two-stage model[J]. Plasma Sources Science and Technology, 2022, 31(7): 07LT02.
    [12] Liu Y, Zhao Y, Ren Y J, et al. Analysis of cavities characteristics of underwater pulsed current discharge[J]. Plasma Sources Science and Technology, 2021, 30(8): 085005.
    [13] Baroch P, Potocky S, Saito N. Generation of plasmas in water: utilization of a high-frequency, low-voltage bipolar pulse power supply with impedance control[J]. Plasma Sources Science and Technology, 2011, 20(3): 034017.
    [14] Lehr J M, Agee F J, Copeland R, et al. Measurement of the electric breakdown strength of transformer oil in the sub-nanosecond regime[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1998, 5(6): 857-861.
    [15] Zahn M, Ohki Y, Fenneman D B, et al. Dielectric properties of water and water/ethylene glycol mixtures for use in pulsed power system design[J]. Proceedings of the IEEE, 1986, 74(9): 1182-1221.
    [16] Yang Z, Cao H, Hao J, et al. Post-breakdown dielectric recovery characteristics of water for high-repetition-rate switch[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(3): 909-914.
    [17] Tu Y L, Xia H L, Yang Y, et al. Time-resolved imaging of electrical discharge development in underwater bubbles[J]. Physics of Plasmas, 2016, 23(1): 013507.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:30
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2025-03-28
  • 最后修改日期:2025-04-29
  • 录用日期:2025-04-29
文章二维码