面向可靠性评估的温度修正负荷预测
DOI:
CSTR:
作者:
作者单位:

重庆大学电气工程学院

作者简介:

通讯作者:

中图分类号:

TM715???????

基金项目:

国家重点研发计划项目(2023YFA1011304)


Temperature corrected load forecasting for reliability assessment
Author:
Affiliation:

School of Electrical Engineering,Chongqing University

Fund Project:

National Key Research and Development Program of China(2023YFA1011304)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有研究方法对时序积温效应与电力负荷变化之间量化关系刻画不足、难以适应快速变化的气候环境等问题,提出一种面向可靠性评估并计及积温效应的深度强化学习长期负荷时序预测方法。首先,通过深度确定性策略梯度方法学习温度修正模型,量化高温与负荷的非线性关系,反映出高温天气对负荷累积性上升的影响,并对气候温度进行修正。其次,筛选出除温度影响外的其余电力负荷重要影响因素,并对影响因素数据进行预处理。最后,基于历史负荷、修正后的温度数据和其余影响因素数据,采用STL-LSTM-FED模型对负荷时序数据进行长期预测。选取2012-2014年某省份实际数据进行算例分析,实验表明,与传统方法相比,该模型在极端高温情景下的预测精度有明显提升,验证了其对复杂气候条件的适应性。研究结果不仅提升了负荷预测的气候适应性,更通过准确捕捉温度累积效应导致的负荷增长模式为评估电网设备安全稳定裕度和面向极端灾害场景下备用容量配置提供了数据支撑,有效增强了对电网供电可靠性的预判能力。

    Abstract:

    Aiming at the problems that the existing research methods do not adequately describe the quantitative relationship between time series accumulated temperature effect and power load change, and it is difficult to adapt to the rapidly changing climate environment, this paper proposes a long-term load time series forecasting method based on deep reinforcement learning for reliability assessment and considering the accumulated temperature effect. Firstly, the temperature correction model is learned through the depth deterministic strategy gradient method to quantify the nonlinear relationship between high temperature and load, reflect the impact of high temperature weather on the cumulative rise of load, and modify the climate temperature. Secondly, the other important influencing factors of power load except temperature are screened out, and the influencing factor data are preprocessed. Finally, based on the historical load, the corrected temperature data and the data of other influencing factors, the STL-LSTM-FED model is used to predict the long-term load time series data. The actual data of a province from 2012 to 2014 are selected for example analysis. Experiments show that, compared with the traditional method, the prediction accuracy of the model in extreme high temperature scenarios has been significantly improved, which verifies its adaptability to complex climate conditions. The research results not only improve the climate adaptability of load forecasting, but also provide data support for evaluating the security and stability margin of power grid equipment and reserve capacity configuration under extreme disaster scenarios by accurately capturing the load growth mode caused by temperature accumulation effect, and effectively enhance the prediction ability of power grid reliability.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-28
  • 最后修改日期:2025-08-27
  • 录用日期:2025-09-24
  • 在线发布日期:
  • 出版日期:
文章二维码