自动驾驶与VRU交互的D-RRT轨迹优化
DOI:
CSTR:
作者:
作者单位:

长安大学运输工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

/ Supported by:国家自然科学基金(51878066,52002033);中央高校基本业务经费 (300102343205) ; 陕西省自然科学基础研究计划(2021 JQ-276);高等学校学科创新引智计划(编号:B20035)


D-RRT-Based Trajectory Optimization for Autonomous Vehicle and VRU Interaction
Author:
Affiliation:

college of transportation engineering Chang’an University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    交叉口是交通冲突高发点,如何更好地协调自动驾驶汽车与行人等弱势道路使用者(Vulnerable Road Users, VRUs)是交通安全的关键问题。为保障自动驾驶车辆在交叉口环境下的VRU过街安全及车辆通行顺畅,本研究提出了基于VRU轨迹预测的指向性改进的快速扩展随机树(Directional-improved Rapidly-exploring Random Tree, D-RRT)轨迹优化算法。通过自采的未央路视频数据集(Weiyang Road Dataset, WY-Road Dataset)和大连理工大学视频数据集(Dalian University of Technology Dataset, DUT Dataset),筛选影响轨迹预测的VRU和车辆运动特征,之后对交叉口场景进行数学化描述,设立约束条件,划分不同VRU与车辆交互场景,建立安全距离模型,并提出了一种对常规快速扩展随机树(Rapidly-exploring Random Tree, RRT)算法进行指向性改进的算法D-RRT,优化自动驾驶与VRU的交互轨迹,并使用三次样条插值优化轨迹。结果表明:D-RRT算法相比常规RRT算法,轨迹曲率变化差异减少31.67%,平均规划时间缩短0.1s,且时间稳定性更好。此外,D-RRT算法在提高VRU最小距离和降低与VRU冲突风险方面表现优异,保障了轨迹优化质量。

    Abstract:

    Intersections are high-risk locations for traffic conflicts, where coordinating autonomous vehicles (AVs) with vulnerable road users (VRUs) like pedestrians is critical for safety. To ensure VRU crossing safety and traffic efficiency at intersections, this study proposes a Directional-improved Rapidly-exploring Random Tree (D-RRT) trajectory optimization algorithm based on VRU trajectory prediction. Using the self-collected Weiyang Road Video Dataset (WY-Road Dataset) and the Dalian University of Technology Video Dataset (DUT Dataset), we first identify motion features influencing trajectory prediction, then mathematically model intersection scenarios with constraints. Safety distance models are established for categorized VRU-vehicle interaction scenarios. The proposed D-RRT algorithm improves conventional RRT through directional optimization, with trajectories further refined via cubic spline interpolation. Results demonstrate that compared to RRT, D-RRT reduces trajectory curvature variation by 31.67%, shortens average planning time by 0.1s with better temporal stability. Additionally, the D-RRT algorithm excels in increasing the minimum distance to VRUs and reducing the risk of VRU-vehicle conflicts, ensuring the quality of trajectory optimization.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-06
  • 最后修改日期:2025-08-30
  • 录用日期:2025-09-04
  • 在线发布日期:
  • 出版日期:
文章二维码