基于文本和用户证据的细粒度虚假信息检测
DOI:
CSTR:
作者:
作者单位:

昆明理工大学信息工程与自动化学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Fine-Grained Fake News Detection Based on Textual and User Evidence
Author:
Affiliation:

a. Faculty of Information Engineering and Automation,Kunming University of Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有的虚假信息检测方法主要侧重于对文本特征和结构特征进行研究分析,不能综合考虑虚假信息传播过程中的细微线索(如支持文章的用户和关于文章的帖子)。基于证据推理的方法可以通过复杂的推理技巧对传播过程中的细微线索进行细粒度建模以此来实现虚假信息检测,但证据通常具有很大的规模,通过考虑所有证据来执行细粒度推理是相当困难的。人类思维的逻辑推理能力可以更好的将细微线索联系起来并识别出最关键的。细粒度的推理框架以更好地反映了人类思维的逻辑过程实现对微妙线索的建模,从而转向了对虚假信息检测的细粒度推理。具体来说,首先根据文本和用户之间的互动构建了基于相互强化的主张-证据图来识别关键证据,其次设计了一个先验感知的双通道核图网络来建模证据之间的细微差异。为了验证所提出方法的有效性,在两个公开数据集上设计了实验。实验结果表明,模型方法相较于最佳基线方法在准确率上分别提高了5%和7.9%。

    Abstract:

    Existing fake information detection methods primarily focus on analyzing textual and structural features, failing to comprehensively consider subtle clues in the propagation process of misinformation (e.g., users supporting articles and posts about articles). Evidence-based reasoning methods can achieve fine-grained modeling of these subtle clues during propagation through complex reasoning techniques, thereby enabling fake information detection. However, evidence is often large-scale, making it highly challenging to perform fine-grained reasoning by considering all evidence. The logical reasoning ability of human thinking can better connect subtle clues and identify the most critical ones. A fine-grained reasoning framework, which better reflects the logical process of human thinking, is proposed to model these subtle clues, thereby shifting toward fine-grained reasoning for fake information detection. Specifically, first, a mutually reinforced claim-evidence graph is constructed based on interactions between text and users to identify key evidence. Second, a prior-aware dual-channel kernel graph network is designed to model subtle differences among evidence. To validate the effectiveness of the proposed method, experiments are conducted on two public datasets. The results demonstrate that the proposed model improves accuracy by 5% and 7.9%, respectively, compared to the best baseline methods.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-11
  • 最后修改日期:2025-06-13
  • 录用日期:2025-07-07
  • 在线发布日期:
  • 出版日期:
文章二维码