基于时空图卷积网络的水质多参数预测算法
DOI:
CSTR:
作者:
作者单位:

1.重庆大学微电子与通信工程学院;2.重庆理工大学两江人工智能学院;3.重庆大学光电技术及系统教育部重点实验室

作者简介:

通讯作者:

中图分类号:

基金项目:

中央高校基本科研业务费资助项目(2023CDJKYJH085);重庆市九龙坡区科技计划项目(2023TJ2001);重庆市青少年创新人才培养计划(CY240903)


A multi-parameter prediction algorithm for water quality based on spatial-temporal graphical convolutional networks
Author:
Affiliation:

1.School of Microelectronics and Communication Engineering, Chongqing University;2. School of Artificial Intelligence, Chongqing University of Technology;3.School of Artificial Intelligence, Chongqing University of Technology,;4.Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education, Chongqing University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    水质预测是水资源生态治理体系的核心环节,在时间演变、随机扰动及环境变迁等多重因素作用下,水质监测数据呈现出非平稳动态特征与多维非线性耦合关系。针对流域水质多参数预测中时空依赖复杂、传统模型难以有效融合动态拓扑与长周期特征的问题,本文提出了一种基于时空图卷积网络的水质预测算法。在时间维度上,设计掩码子序列Transformer模块,通过随机掩码自监督预训练任务使模型从长周期数据中提取趋势特征,结合扩张因果卷积捕获水质特征的累积效应,解决传统模型对突变事件的响应滞后问题。在空间维度上,构建动态图结构学习模块,融合基于站点物理距离的预定义邻接矩阵与动态残差图生成动态图结构。实验结果表明,相较于其他水质时空预测模型,该模型具有更好的预测精度,对所有水质指标的预测R2均能达到93%以上。

    Abstract:

    Abstract: Water quality prediction is essential for ecological water management. Water quality exhibits complex non-stationary dynamics and multi-dimensional nonlinear relationships due to temporal evolution and environmental changes. In multi-parameter prediction of river water quality, the spatial-temporal dependence is complex, and traditional models struggle to integrate dynamic topology with? long-period features effectively. Therefore, we propose a spatial-temporal graph convolutional network model. In the temporal dimension, a masked sub-series transformer module extracts long-term trends through self-supervised pre-training. Combined with dilated causal convolution, it captures cumulative water quality effects. It solves the lag problem of traditional models in responding to sudden changes. In the spatial dimension, a dynamic graph learning module fuses a predefined station-distance adjacency matrix with a dynamic residual map to generate adaptive graph structures. Experimental results demonstrate that our model outperforms existing methods for predicting water quality. The prediction R2 for all water quality indicators exceeds 93%.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-27
  • 最后修改日期:2025-07-25
  • 录用日期:2025-08-20
  • 在线发布日期:
  • 出版日期:
文章二维码