基于改进灰狼优化算法的露天煤矿卡车调度模型求解方法
DOI:
CSTR:
作者:
作者单位:

1.辽宁工程技术大学 矿业学院;2.辽宁工程技术大学矿产资源开发利用技术及装备研究院;3.中煤平朔集团有限公司安家岭露天矿;4.四川科技职业学院 药学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金,国家自然科学基金项目(面上项目,重点项目,重大项目)


Solution Method for Open-Pit Coal Mine Truck Scheduling Model Based on Improved Grey Wolf Optimisation Algorithm
Author:
Affiliation:

1.School of Mining, Liaoning University of Engineering and Technology;2.Institute of Mineral Resources Development and Utilization Technology and Equipment,Liaoning Technical University;3.Anjialing Open pit Mine of middling coal Pingshuo Group Co., Ltd;4.Sichuan University of Science and Technology

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对露天矿卡车运输调度优化问题,该文章提出了一种基于变异策略和广义反向学习的自适应灰狼优化算法(GOBL-IGWO)。该算法通过引入自适应参数调整机制、广义反向学习策略和狼群变异策略,有效改善了传统灰狼优化算法(GWO)在后期收敛速度慢、全局勘探与局部开采能力不平衡的问题,显著提升了算法的收敛性和稳定性。为验证GOBL-IGWO算法的性能,将其与粒子群优化算法(PSO)、差分进化算法(DE)、传统GWO算法以及改进粒子群优化算法(IPSO)在CEC2005测试函数集(F1-F25)上进行了对比实验。实验结果表明,GOBL-IGWO算法在单峰、多峰、混合及组合函数中均表现出优异的优化性能,特别是在复杂多峰函数中展现了更强的全局搜索能力和局部开发能力,能够有效避免陷入局部最优。此外,GOBL-IGWO算法在收敛速度和求解精度方面显著优于对比算法,体现了其更高的寻优性能和鲁棒性。研究结果表明,GOBL-IGWO算法能够更好地适应露天矿卡车调度问题的复杂性和实时性要求,为实际应用提供了更可靠的解决方案,对提高矿山运输效率和降低生产成本具有重要的实践意义。

    Abstract:

    This paper proposes an adaptive grey wolf optimizer based on mutation strategies and generalized opposition-based learning (GOBL-IGWO) for optimizing truck dispatch in open-pit mines. To address the slow convergence in later stages and imbalance between global exploration and local exploitation capabilities inherent in the traditional grey wolf optimizer (GWO), an adaptive parameter adjustment mechanism, a generalized opposition-based learning strategy, and wolf pack mutation strategies were introduced. These modifications effectively enhanced the algorithm"s convergence and stability.2Comparative experiments evaluated the GOBL-IGWO algorithm against particle swarm optimization (PSO), differential evolution (DE), the traditional GWO, and an improved PSO (IPSO) using the CEC2005 benchmark functions (F1-F25). Results demonstrated that GOBL-IGWO exhibits superior optimization performance across unimodal, multimodal, hybrid, and composition functions. The algorithm showed particularly strong global search and local development capabilities on complex multimodal functions, effectively avoiding local optima. Furthermore, GOBL-IGWO significantly outperformed the compared algorithms in both convergence speed and solution accuracy, demonstrating higher optimization performance and robustness.These findings indicate that the GOBL-IGWO algorithm better adapts to the complexity and real-time requirements of open-pit mine truck scheduling problems. It provides a more reliable solution for practical applications, holding significant practical significance for improving mine transport efficiency and reducing production costs.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-10
  • 最后修改日期:2025-10-14
  • 录用日期:2025-10-15
  • 在线发布日期:
  • 出版日期:
文章二维码