用于建筑能耗预测的多尺度可解释时序预测网络模型
DOI:
CSTR:
作者:
作者单位:

联勤保障部队工程大学

作者简介:

通讯作者:

中图分类号:

TM715

基金项目:

全军后勤科研重点项目(2023);军事类研究生资助课题重点项目(JY2023B082);重庆市教委科技项目(KJQN202312903)


Multi-scale Interpretable Temporal Prediction Network for Building Energy Consumption Forecasting
Author:
Affiliation:

1.Engineering University of Joint Logistic Support Force,Chongqing,401331;2.China;3.Engineering University of Joint Logistic Support Force,401331

Fund Project:

Key Scientific Research Projects of the General Logistics Department of the PLA(2023);Key Project of Military Graduate Student Funding Program(JY2023B082);Chongqing Municipal Education Commission Science and Technology Project((KJQN202312903))

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    建筑能耗预测对于优化能源管理、降低运营成本、实现碳中和目标至关重要。为提高能耗预测精度和结果的可解释性,通过长短期时序网络(LSTM)和科尔莫戈罗夫-阿诺德网络(KAN) 协同优化,提出一种多尺度可解释时序预测网络模型(ITSFN)。该模型融合时序-环境特征解耦与动态注意力机制,通过显式分离时序数据的季节项、趋势项及残差项,构建结构化特征空间,采用门控循环单元(gated recurrent unit, GRU)与多头注意力的并行架构实现多尺度特征建模。在夏热冬冷地区某高校教学楼能耗数据集上进行测试,结果表明ITSFN总能耗预测RMSE较LSTM降低13.9%,分项能耗预测RMSE较Transformer降低31.1%;ITSFN通过特征解耦将噪声抑制系数提升至0.89,在突变区域实现0.92的注意力局角度,较传统方法减少29.6%的过平滑现象,且通过量化特征贡献度呈现各分量权重演化规律,验证了模型的有效性和实用性。

    Abstract:

    Building energy consumption forecasting is crucial for optimizing energy management, reducing operational costs, and achieving carbon neutrality goals. To improve prediction accuracy and result reliability, this study proposes a Multi-Scale Interpretable Temporal Prediction Network Model(ITSFN) through the collaborative optimization of Long Short-Term Temporal Networks (LSTM) and Kolmogorov-Arnold Networks (KAN). The model integrates temporal-environmental feature decoupling and a dynamic attention mechanism, explicitly decomposing time-series data into seasonal, trend, and residual components to construct a structured feature space. It employs a parallel architecture of Gated Recurrent Units (GRU) and multi-head attention for multi-scale feature modeling. Tested on an energy consumption dataset from a university teaching building in a hot-summer/cold-winter region, the results show that ITSFN reduces the RMSE of total energy consumption prediction by 13.9% compared to LSTM and decreases the RMSE of sub-item energy consumption prediction by 31.1% compared to Transformer. Additionally, ITSFN enhances the noise suppression coefficient to 0.89 through feature decoupling, achieves a local attention angle of 0.92 in mutation regions, and reduces over-smoothing by 29.6% compared to traditional methods. By quantifying feature contributions, it reveals the evolutionary patterns of component weights, validating the model"s effectiveness and practicality.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-12
  • 最后修改日期:2025-07-04
  • 录用日期:2025-09-30
  • 在线发布日期:
  • 出版日期:
文章二维码