基于多目视觉与汇聚算法的自动报靶系统研究
DOI:
CSTR:
作者:
作者单位:

天津科技大学电子信息与自动化学院

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Research on automatic target reporting system of recurved target based on multi-eye vision and convergence algorithm

Author:
Affiliation:

1.College of Electronic Information and Automation,Tianjin University of Science Technology;2.School of Electronic Information and Automation, Tianjin University of Science and Technology

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有报靶系统主要针对单环靶设计,缺少对三环靶环数识别的解决方案。针对反曲三联靶提出一种基于多目视觉与汇聚算法的自动报靶系统,以实现对多环目标的高效准确识别。系统利用四个摄像机从不同角度捕获箭靶图像,并通过图像处理、特征提取和智能算法自动检测箭的位置和计算得分。系统在处理遮挡和角度误差等复杂场景时表现出了显著的鲁棒性和准确性,它能够利用冗余摄像头数据来处理遮挡问题,通过多个视角的数据平均化来减少透视变形误差,并且具备智能回退机制,可以根据数据可用性自动选择最优数据组合。此外,系统可以通过对不同摄像头的同一箭头区域进行判定来提高定位准确性,并根据摄像头的可靠性和数据质量动态调整各摄像头的数据在最终结果中的权重。该系统的识别准确率达94.5%,与传统的双目相机系统相比,识别准确率提高了26.5%。

    Abstract:

    The existing target reporting systems are mainly designed for single-ring targets and lack solutions for recognizing the number of rings in three-ring targets. This paper proposes an automatic target reporting system based on multi-camera vision and convergence algorithm for the recurve triple target, aiming to achieve efficient and accurate recognition of multi-ring targets. The system uses four cameras to capture images of the target from different angles and detects the position of the arrow landing point and calculates the number of rings through image processing and feature extraction. The system demonstrates significant robustness and accuracy in handling complex scenarios such as occlusion and angle errors. It can utilize redundant camera data to handle occlusion problems, reduce perspective distortion errors by averaging data from multiple perspectives, and has an intelligent fallback mechanism that can automatically select the optimal data combination based on data availability. Additionally, the system can improve positioning accuracy by determining the same arrow area in different cameras and dynamically adjust the weight of each camera's data in the final result based on the reliability and data quality of the cameras. The recognition accuracy of this system reaches 94.5%, which is 26.5% higher than that of the traditional binocular camera system.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-18
  • 最后修改日期:2025-12-15
  • 录用日期:2025-12-19
  • 在线发布日期:
  • 出版日期:
文章二维码