基于多尺度上下文和全阶段特征融合的输电线分割网络
DOI:
CSTR:
作者:
作者单位:

1.国网江苏省电力有限公司徐州供电分公司;2.天津大学微电子学院

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国网江苏省电力有限公司科技项目(J2024192)


Transmission Line Segmentation Network with Multi-Scale Context and Full-Stage Feature Fusion
Author:
Affiliation:

1.State Grid Jiangsu Electric Power Co,Ltd Xuzhou Power Supply Branch;2.State Grid Jiangsu Electric Power Co., Ltd. Xuzhou Power Supply Branch;3.China;4.School of Microelectronics,Tianjin University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高输电线路巡检过程中的识别精度,提出了一种基于多尺度上下文与全阶段特征融合的输电线图像分割网络LTSeg-Net。首先,引入多尺度上下文提取(Multi-scale Context Extraction,MSCE)模块,利用不同感受野信息捕获复杂背景中的输电线结构。其次,设计了全阶段特征融合(Full-Stage Feature Fusion , FSFF)结构,通过多尺度特征聚合与高效加法注意力(Efficient Additive Self-Attention, EASA)机制,提升关键信息提取效果并抑制背景干扰。此外,还构建了一套涵盖多种天气和光照条件的输电线分割数据集(Surveillance-based PowerLine Segmentation, SPLS),并在该数据集上进行了分割测试,与最新分割性能优异的RCFSNet方法相比,IoU、Pre和F1指标分别提升了0.89%、0.97%和0.99%。实验结果表明,LTSeg-Net 方法在复杂环境下能够更准确地提取出输电线结构。

    Abstract:

    To improve the recognition accuracy during power line inspection, we propose a power line image segmentation network called LTSeg-Net, which is based on multi-scale context and full-stage feature fusion. First, a multi-scale context extraction (MSCE) module is introduced to capture the structure of power lines in complex backgrounds using information from different receptive fields. Second, a full-stage feature fusion (FSFF) structure is designed to enhance the extraction of key information and suppress background interference through multi-scale feature aggregation and an efficient additive self-attention (EASA) mechanism. Additionally, a power line segmentation dataset (Surveillance-based PowerLine Segmentation, SPLS) covering various weather and lighting conditions was constructed, and segmentation tests were conducted on this dataset. Compared to the state-of-the-art RCFSNet method with superior segmentation performance, the IoU, Pre, and F1 metrics were improved by 0.89%, 0.97%, and 0.99%, respectively. Experimental results demonstrate that the LTSeg-Net method can more accurately extract power line structures in complex environments.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-20
  • 最后修改日期:2025-12-25
  • 录用日期:2026-01-05
  • 在线发布日期:
  • 出版日期:
文章二维码