考虑区间不确定性的蜂窝夹芯复合材料多尺度可靠性优化
DOI:
CSTR:
作者:
作者单位:

1.重庆大学 航空航天学院;2.江苏科技大学 船舶与海洋工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Multi-scale Reliability Optimization of Honeycomb Sandwich Composites Based on Interval Uncertainties
Author:
Affiliation:

1.College of Aerospace Engineering Chongqing University;2.College of Shipbuilding and Ocean Engineering,Jiangsu University of Science and Technology

Fund Project:

Supported by the Chinese National Natural Science Fund

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种基于区间理论的蜂窝夹芯复合材料多尺度可靠性优化方法。首先,基于蜂窝夹芯复合材料的多尺度特性以及通用单胞分析模型,分别建立其面板和芯材的细观尺度参数化有限元模型,以获得它们的等效力学参数。随后,将这些参数导入蜂窝夹芯复合材料的三点弯宏观参数化有限元模型,从而获取其宏观力学响应。在此基础上,建立考虑区间不确定性的蜂窝夹芯复合材料多尺度可靠性优化模型,该优化模型以蜂窝夹芯复合材料弯曲力学性能的可能度为约束。采用基于区间理论的全局灵敏度分析方法对其进行灵敏度分析,以减少设计变量和不确定性参数数量,并建立降维的蜂窝夹芯复合材料多尺度可靠性优化模型,从而提高可靠性优化效率。最后,通过仿真算例验证本文提出方法的精度和效率。仿真结果表明,当选择60%的可能度水平进行优化,在结构弯曲、剪切刚度基本不变的前提下,结构质量降低了约16%,成本降低了约22%。

    Abstract:

    A multi-scale reliability optimization method for honeycomb sandwich composites is proposed based on interval theory. We first develop parameterized finite element models at the microscale for both the face sheets and the core, using a generalized representative volume cell approach to capture the multi-scale characteristics of the material. These models yield the effective mechanical properties of the constituents. We then integrate these homogenized properties into a macroscopic parameterized finite element model of the sandwich structure under three-point bending to evaluate its global mechanical response. Next, we construct a multi-scale reliability optimization model that incorporates interval uncertainties and uses the possibility level of the bending performance as a constraint. To improve computational efficiency, we perform global sensitivity analysis based on interval theory to identify key design and uncertainty parameters. This enables us to reduce the problem"s dimensionality and formulate a more efficient reliability optimization model. Finally, we verify the proposed method through numerical simulations. The results show that, under a 60% possibility level, the optimized design reduces structural weight by approximately 16% and lowers cost by about 22%, while maintaining comparable bending and shear stiffness.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-30
  • 最后修改日期:2025-09-26
  • 录用日期:2025-10-09
  • 在线发布日期:
  • 出版日期:
文章二维码