基于YOLOv12网络改进的间隔棒目标检测
DOI:
CSTR:
作者:
作者单位:

国网江苏省电力有限公司徐州供电分公司 徐州

作者简介:

通讯作者:

中图分类号:

TM76

基金项目:

国网江苏省电力有限公司科技项目(J2024192)


Improved Spacer Target Detection Based on YOLOv12
Author:
Affiliation:

State Grid Jiangsu Electric Power Co., Ltd. Xuzhou Power Supply Branch

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    间隔棒(Spacer)在输电线路中主要用于保持导线之间的适当间距,防止导线之间发生碰撞或接触。随着电力输送网络的规模日益增长,输电线路上的间隔棒检测对保障导线安全至关重要。针对室外高压输电线路环境中背景复杂、间隔棒尺寸小、拍摄角度多变等挑战,本文提出一种基于YOLOv12改进的间隔棒检测算法。首先,针对室外存在的多种复杂自然环境引起的图像低质模糊问题对原始图像引入图像预处理策略以增强训练样本的清晰度。此外,针对间隔棒目标在图中的占比较小,容易在卷积降采样的特征提取过程中存在信息丢失问题,本文引入SPDConv(Space-to-Depth Convolution)模块用于减少有益于目标识别的信息损失,增强对间隔棒的检测能力。同时,由于本文任务的特殊性,现缺少相关可用的数据集。基于此,本文构建了一个涵盖了多种复杂真实场景的间隔棒图像数据集。并基于该数据集开展相关的实验验证,实验结果表明,与基准模型YOLOv12相比,改进后的模型精度提高了8.2%,召回率提高了10.8%,明显增强了对间隔棒目标的检测精度,以及用于现实复杂场景的可行性。

    Abstract:

    Spacers in power transmission lines are primarily employed to maintain an appropriate distance between conductors, preventing collisions or contact between them. As the scale of power transmission networks continues to expand, the detection of spacer bars on transmission lines becomes critical for ensuring the safety of the conductors. To address these issues, this paper proposes an improved spacer detection algorithm based on YOLOv12. First, to mitigate the impact of various natural environmental factors that often degrade image quality, an image preprocessing strategy is introduced to enhance the clarity of training samples. Second, to address the small proportion of spacers in the image and the risk of losing crucial information during convolutional down-sampling, the Space-to-Depth Convolution (SPDConv) block is incorporated to preserve informative features and improve detection accuracy. Additionally, due to the lack of publicly available datasets tailored to this task, a new spacer image dataset covering a range of complex real-world scenarios was constructed. Experimental results on this dataset demonstrate that the proposed model outperforms the baseline YOLOv12 model, achieving an 8.2% improvement in precision and a 10.8% increase in recall. These results confirm the effectiveness and feasibility of the proposed approach for accurate spacer detection under complex real-world conditions.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-13
  • 最后修改日期:2025-09-29
  • 录用日期:2025-10-11
  • 在线发布日期:
  • 出版日期:
文章二维码