基于内聚力界面模型的平面编织复合材料的强度预测
DOI:
CSTR:
作者:
作者单位:

重庆大学

作者简介:

通讯作者:

中图分类号:

V258

基金项目:

国家自然科学基金资助项目(11702041);重庆市自然科学(CSTB2024NSCQ-MSX0279)。


Strength prediction of planar woven composites based on thecohesive interface model
Author:
Affiliation:

College of Aerospace Engineering,Chongqing University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    平面编织复合材料因其优异的力学性能和可设计性被广泛应用于航空航天、汽车制造等领域,但其各向异性及多尺度损伤机制使得其力学行为的预测面临挑战。本文针对平面编织复合材料的渐进损伤力学行为,构建了一种多尺度损伤分析模型,结合渐进损伤力学系统地研究了材料损伤失效过程和极限强度。首先,基于细观尺度的纤维束代表性体积单元,建立了包含纤维、基体及界面的有限元模型,其中使用内聚力单元模拟基体/纤维的界面失效,采用Tsai-Wu等失效准则与刚度递归折减方案模拟纤维束损伤起始与累积;其次,通过宏-细观跨尺度关联方法模拟计算平面编织复合材料损伤失效过程和极限强度,并与现有试验结果对比验证了方法的有效性。

    Abstract:

    Planar woven composites, renowned for their superior mechanical properties and design flexibility, are extensively used in aerospace and automotive industries. However, their anisotropic nature and multi-scale damage mechanisms pose challenges in predicting their mechanical behavior. This paper addresses the progressive damage behavior of planar woven composites by developing a multi-scale damage analysis model. The study systematically investigates the material"s damage failure process and ultimate strength. Initially, a finite element model incorporating fibers, matrix, and interface is established based on a representative volume element at the microscale fiber bundle level. Cohesive elements are employed to simulate interface failure between the matrix and fibers, while Tsai-Wu failure criteria and stiffness recursive reduction schemes are utilized to model the initiation and accumulation of fiber bundle damage. Subsequently, a scale-bridging approach is applied to simulate the damage failure process and ultimate strength of planar woven composites, which is validated through comparisons with existing experimental results.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-17
  • 最后修改日期:2025-08-05
  • 录用日期:2025-10-09
  • 在线发布日期:
  • 出版日期:
文章二维码