杨学海,等:基于多尺度特征提取与交互的遥感图像水体分割网络????????????? ????????? ??????? 17
DOI:
CSTR:
作者:
作者单位:

1.a.西南电子技术研究所;2.b.重庆大学自动化学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Remote Sensing Image Water Body Segmentation Network Based on Multi-Scale Feature Extraction and Interaction
Author:
Affiliation:

1.Southwest China Institute;2.School of Automation, Chongqing University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确提取遥感影像中的水体信息对水资源管理、灾害监测等领域至关重要。针对传统语义分割模型在多尺度特征利用、复杂场景下边界刻画及相似地物区分等方面的不足,本文提出一种多尺度特征提取与交互网络(Multi-Scale Feature Extraction and Interaction Network, MSFEINet)。设计了特征融合模块、多尺度卷积模块、尺度通道注意力深度可分离卷积特征提取模块,通过多尺度特征交互、注意力机制与跨层特征融合,提升水体分割精度与效率。实验结果表明,MSFEINet 对轮廓细节的刻画更准确,分割完整性更优,在精度与效率上的综合优势。

    Abstract:

    . Accurately extracting water body information from remote sensing images is crucial for fields such as water resource management and disaster monitoring. Aiming at the deficiencies of traditional semantic segmentation models in multi-scale feature utilization, boundary depiction in complex scenes, and differentiation of similar ground objects, this paper proposes a Multi-Scale Feature Extraction and Interaction Network (MSFEINet). It designs a Feature Fusion Module, a Multi-scale Convolution Module, a Scale-Channel Attention Module, and a Depthwise Separable Convolution Feature Extraction Module. Through multi-scale feature interaction, attention mechanism, and cross-layer feature fusion, the accuracy and efficiency of water body segmentation are improved. Experimental results show that MSFEINet can depict contour details more accurately and achieve better segmentation integrity, demonstrating comprehensive advantages in both accuracy and efficiency.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-30
  • 最后修改日期:2025-09-25
  • 录用日期:2025-12-11
  • 在线发布日期:
  • 出版日期:
文章二维码