基于多视角扩散图神经网络的城市交通流预测
DOI:
CSTR:
作者:
作者单位:

中国人民公安大学

作者简介:

通讯作者:

中图分类号:

基金项目:


The urban traffic flow prediction based on multi-view diffusion graph neural network
Author:
Affiliation:

People’s Public Security University of China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提升城市交通流预测的准确性,提出一种基于多视角扩散图神经网络(multi-view diffusion graph neural network, MVDGNN)的模型。首先融合静态拓扑图和动态信息图,从多个视角构建交通网络图,在空间上采用扩散图卷积网络(diffusion graph convolutional network, DGCN)有效建模空间依赖,并通过自适应加权融合机制动态调整静态与动态特征的权重,在时间上引入多头注意力机制和双向门控循环单元(bidirectional gated recurrent unit, Bi-GRU)捕捉时序特征,最后通过多层感知机输出未来多个时间步的预测结果。采用PEMS04和PEMS08两个真实数据集进行验证,结果表明,与基线模型相比,MVDGNN模型的平均绝对误差(mean absolute error, MAE)、平均绝对百分比误差(mean absolute error, MAPE)以及均方根误差(root mean square error, RMSE)评估指标分别改善了3.01%~24.73%、1.65%~36.04%、1.21%~47.50%;消融实验验证多视角图结构与时空模块的协同作用,融合后的模型性能显著优于单一图结构。由此可见,该模型具有较好的预测性能,为城市交通流预测提供了新思路。

    Abstract:

    Urban traffic flow prediction accuracy was improved by proposing a multi-view diffusion graph neural network (MVDGNN). Static topology graphs and dynamic information graphs were integrated to construct traffic networks from multiple views. A diffusion graph convolutional network (DGCN) effectively modeled spatial dependencies, while an adaptive weighted fusion mechanism dynamically adjusted the contribution of static and dynamic features. In the temporal dimension, a multi-head attention mechanism and a bidirectional gated recurrent unit (Bi-GRU) captured temporal features. A multi-layer perceptron (MLP) produced predictions for multiple future time steps. The model was validated on two real-world datasets, PEMS04 and PEMS08. Results show that MVDGNN reduced mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE) by 3.01%-24.73%, 1.65%-36.04%, and 1.21%-47.50%, respectively, compared with baseline models. Ablation experiments confirm the collaborative effect of multi-view graph structures and spatio-temporal modules. The integrated model performs significantly better than single-view graph structures and offers new insights into urban traffic flow prediction.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-08-06
  • 最后修改日期:2025-12-13
  • 录用日期:2025-12-22
  • 在线发布日期:
  • 出版日期:
文章二维码