基于人工噪声辅助的无人机中继保密容量优化技术
DOI:
CSTR:
作者:
作者单位:

1.中国工程物理研究院 电子工程研究所;2.95875 部队;3.电子科技大学 自动化工程学院

作者简介:

通讯作者:

中图分类号:

TN393???????

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Optimization Techniques for Secrecy Capacity in UAV Relay Systems Assisted by Artificial Noise
Author:
Affiliation:

1.Institute of Electronic Engineering, China Academy of Engineering Physics;2.95875 Unit;3.School of Automation Engineering, University of Electronic Science and Technology of China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    无线信道的广播特性导致其面临严重的窃听风险,尤其当窃听方与合法接收方距离接近时,两者的信道状态信息(channel state information,CSI)呈现高度相关性甚至更优,致使传统功率优化方法难以有效降低窃听速率。针对该问题提出了一种基于功率分配因子优化的无人机中继保密容量优化技术,通过动态调整功率分配因子控制人工噪声(artificial noise,AN)的功率占比,实现对窃听信道的自适应干扰控制。构建由源节点、无人机中继、合法接收方和窃听方四节点组成的通信系统,建立以最大化保密容量为目标的非凸优化问题。通过引入松弛变量和逐次凸逼近(successive convex approximation,SCA)方法将原问题转化为凸优化问题,结合阶梯注水(staircase water filling,SWF)法推导出功率分配因子的闭式解析解,并提出了一种交替迭代优化算法实现参数的全局优化。仿真结果表明:所提算法相较于传统功率优化算法降低了76%的窃听容量,显著增强了系统的保密性能。

    Abstract:

    The broadcast nature of wireless channels exposes them to severe eavesdropping risks, particularly when the eavesdropper is geographically close to the legitimate receiver. In such scenarios, the Channel State Information (CSI) of both parties exhibits high correlation or even superior quality for the eavesdropper, rendering traditional power optimization methods ineffective in reducing the eavesdropping rate. To address this issue, a secure transmission strategy for unmanned aerial vehicle relays is proposed, based on power allocation factor optimization. By dynamically adjusting the power allocation factor to control the power ratio of Artificial Noise (AN), adaptive interference control over the eavesdropping channel is achieved. A four-node communication system is constructed, comprising a source node, a UAV relay, a legitimate receiver, and an eavesdropper. A non-convex optimization problem is formulated with the objective of maximizing secrecy capacity. Through the introduction of slack variables and the Successive Convex Approximation (SCA) method, the original problem is transformed into a convex optimization problem. Combined with the Staircase Water Filling (SWF) method, a closed-form analytical solution for the power allocation factor is derived, and an alternating iterative optimization algorithm is proposed to achieve global parameter optimization. Simulation results demonstrate that the proposed algorithm reduces eavesdropping capacity by 76% compared to traditional power optimization algorithms, significantly enhancing the system's security performance.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-08-07
  • 最后修改日期:2025-11-05
  • 录用日期:2025-11-10
  • 在线发布日期:
  • 出版日期:
文章二维码