基于时频特征融合与可靠轨迹传播机制的车辆轨迹预测网络
DOI:
CSTR:
作者:
作者单位:

1.佛山仙湖实验室,广东 佛山 528200;2.武汉理工大学 现代汽车零部件技术湖北省重点实验室,武汉 430070

作者简介:

通讯作者:

中图分类号:

U469.79???????

基金项目:

佛山仙湖实验室先进能源科学与技术广东开放基金(XHD2020-003)


A vehicle trajectory prediction network based on time-frequency feature fusion and reliable trajectory propagation mechanism
Author:
Affiliation:

1. Foshan Xianhu Laboratory, Foshan, Guangdong 528200, P. R. China;2. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, P. R. China

Fund Project:

Supported by Guangdong Open Fund Project of Advanced Energy Science and Technology of Foshan Xianhu Laboratory (XHD2020-003)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    车辆轨迹预测是自动驾驶系统实现安全决策的关键技术,针对现有方法在复杂交通环境下特征提取不足和预测准确度低的问题,本文提出了一种基于时频特征融合与可靠轨迹传播的车辆轨迹预测网络TFRPNet。该网络使用多尺度时序卷积网络与隐式神经表示,分别增强轨迹的时域特征和地图的频域特征,通过注意力机制实现跨模态特征融合,解决了传统单维度特征表征的局限性;同时利用可靠轨迹传播机制生成初始可靠轨迹引导最终轨迹生成,有效改善了单阶段预测缺乏修正机制导致的预测精度不足的问题。在Argoverse数据集上的实验表明,TFRPNet在多项性能指标上均优于现有的基准模型。与基准模型中表现较好的SIMPL模型相比,其ADE指标改善5.6%,FDE降低8.5%,MR减少3.7%。本文的研究为车辆轨迹预测领域提供了有价值的参考。

    Abstract:

    Vehicle trajectory prediction is a key technology for enabling safe decision-making in autonomous driving systems. To address the issues of insufficient feature extraction and low prediction accuracy in existing methods under complex traffic environments, this paper proposes a vehicle trajectory prediction network called TFRPNet, based on time-frequency feature fusion and reliable trajectory propagation. This network employs multi-scale temporal convolutional networks and implicit neural representations to enhance the temporal features of trajectories and the frequency-domain features of maps, respectively. By leveraging an attention mechanism, cross-modal feature fusion is achieved, overcoming the limitations of traditional single-dimensional feature representations. Additionally, a reliable trajectory propagation mechanism is utilized to generate initial reliable trajectories that guide the final trajectory generation, effectively improving prediction accuracy by addressing the lack of correction mechanisms in single-stage prediction. Experiments on the Argoverse dataset demonstrate that TFRPNet outperforms existing benchmark models across multiple performance metrics. Compared to the SIMPL model, which performs well among benchmark models, TFRPNet improves ADE by 5.6%, reduces FDE by 8.5%, and decreases MR by 3.7%. This study provides valuable insights for vehicle trajectory prediction.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-02
  • 最后修改日期:2025-10-10
  • 录用日期:2025-12-17
  • 在线发布日期:
  • 出版日期:
文章二维码