基于随机多样化涂鸦提示的轻量医学影像分割
DOI:
CSTR:
作者:
作者单位:

1.中国科学院重庆绿色智能技术研究院;2.中国科学院大学重庆学院;3.陆军军医大学第一附属医院;4.重庆医科大学附属第一医院;5.重庆数康科技服务有限公司

作者简介:

通讯作者:

中图分类号:

TP399

基金项目:

国家自然科学基金(62106247);重庆市自然科学基金(CSTB2024NSCQ-MSX0932);重庆市技术创新与应用发展专项(CSTB2025TIAD-qykjggX0222)


Lightweight Medical Image Segmentation using Randomized Diverse Scribble Prompting
Author:
Affiliation:

1.Chongqing Institute of Green and Intelligent Technology,Chinese Academy of Sciences;2.Chongqing School,University of Chinese Academy of Sciences;3.First Affiliated Hospital,Army Medical University;4.Department of Radiology,The First Affiliated Hospital of Chongqing Medical University;5.Chongqing Shukang Technology Service Co,Ltd

Fund Project:

National Natural Science Foundation of China (62106247) and Natural Science Foundation of Chongqing (CSTB2024NSCQMSX0932, CSTB2024NSCQ-MSX0932)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    医学影像分割作为计算机辅助诊断的重要环节,近年来在基于大模型的“提示—分割”范式下取得了显著进展。MedSAM在医学场景中表现优异,却对计算资源要求较高。轻量化的LiteMedSAM适合资源受限环境,但在提示编码阶段对多样化掩码信息的利用尚不充分,导致在少量稀疏标注条件下难以获得理想的分割效果。针对该问题,提出了基于随机多样化涂鸦提示的轻量医学影像分割方法,在保持LiteMedSAM轻量化的基础上,构建了随机多样化Scribble生成、基于Gumbel-Softmax的提示权重自适应与多级Gate融合三个模块,使之良好地适配提示编码器结构。具体而言,首先利用稀疏提示的全局表征在逻辑层面先验筛选出最具判别力的Scribble模式,随后根据自适应权重随机抽取并生成多路几何形态的二值掩码,最后通过空间—通道级的门控机制,将掩码提示与无掩码先验信息进行动态加权融合。实验结果表明,在不显著增加计算开销的前提下,本文方法在多个医学影像分割数据集上的Dice相似系数(DSC)与归一化表面距离(NSD)均比LiteMedSAM有所提升。目前,本方法已在医学影像辐射剂量评估场景中应用,印证了其临床应用价值。

    Abstract:

    Medical image segmentation, as a crucial component of computer-aided diagnosis, has witnessed remarkable progress in recent years under the "prompt-segmentation" paradigm based on large models. MedSAM has demonstrated excellent performance in medical scenarios but requires substantial computational resources. LiteMedSAM, a lightweight version, is suitable for resource-constrained environments, yet it does not fully utilize diverse mask information during the prompt encoding stage, making it difficult to achieve ideal segmentation results under conditions of sparse annotations. To address this issue, a lightweight medical image segmentation algorithm based on random diverse scribble prompts is proposed. This algorithm maintains the lightweight nature of LiteMedSAM while incorporating three modules: random diverse scribble generation, adaptive prompt weight based on Gumbel-Softmax, and multi-level gate fusion, which are well-suited to the prompt encoder structure. Specifically, it first uses the global representation of sparse prompts to pre-select the most discriminative scribble patterns at the logical level, then randomly generates multiple binary masks with diverse geometric shapes based on adaptive weights, and finally fuses the mask prompts with maskless prior information through a spatial-channel-level gating mechanism with dynamic weighting. Experimental results show that, without significantly increasing computational costs, the proposed method achieves higher Dice similarity coefficients (DSC) and normalized surface distances (NSD) on multiple medical image segmentation datasets compared to LiteMedSAM. Currently, this method has been successfully applied in the scenario of medical image radiation dose assessment, confirming its clinical application value.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-04
  • 最后修改日期:2025-11-21
  • 录用日期:2025-11-24
  • 在线发布日期:
  • 出版日期:
文章二维码