一种基于多帧数据融合匹配的位姿估计方法
DOI:
CSTR:
作者:
作者单位:

1.重庆理工大学 计算机科学与工程学院;2.重庆大学 自动化学院

作者简介:

通讯作者:

中图分类号:

基金项目:

中央高校基本科研业务费国防专项(2024CDJGF-053)。


A Method Based on Pose Estimation Method Optimized by Multi-Frame Data Fusion
Author:
Affiliation:

1.Chongqing University of Technology;2.Chongqing University College of Automation

Fund Project:

Central Fund for Basic Scientific Research at Central Universities Defense Project( 2024CDJGF-053).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统同时定位与地图构建算法中的单帧位姿估计方法会面临IMU数据不可靠、点云特征稀疏等因素导致的位姿估计累计误差、地图重叠与漂移等问题。为解决上述问题,本文聚焦于前端扫描匹配优化策略,提出了一种基于多帧数据融合匹配的位姿估计方法。该方法根据连续帧位姿变化关系实现雷达数据多帧融合;利用Lidar-IMU位姿变换加权融合策略进行位姿预测;扫描匹配阶段引入统计滤波去除点云噪声,并通过二次匹配优化位姿估计。实验结果表明,相较于传统的主流算法,本文方法在真实场景的定位精度分别提升了28.4%、30.1%、65.3%,有效减小了累计误差,提升了轨迹估计精度与建图质量。本研究为移动机器人在建图和自身定位过程中位姿不准及累积误差过大提供了新的解决方案。

    Abstract:

    Traditional methods based on single-frame pose estimation in simultaneous localization and mapping (SLAM) algorithms often suffer from cumulative pose estimation errors, map overlap, and drift due to factors such as unreliable IMU data and sparse point cloud features. To address these issues, this study focuses on optimizing front end scan matching strategies and proposes an enhanced method based on multi-frame data fusion matching. This approach achieves multi-frame fusion of LiDAR data by leveraging the pose transformation relationships of consecutive frames. It employs a weighted fusion strategy of LiDAR-IMU pose transformation for pose prediction. During the scan matching phase, statistical filtering is introduced to remove point cloud noise, and the pose estimation is optimized through secondary matching. Experimental results demonstrate that, compared to traditional mainstream algorithms, the proposed method improves localization accuracy in real-world scenarios by 28.4%, 30.1%, and 65.3%, respectively, effectively reducing cumulative errors and enhancing trajectory estimation accuracy and mapping quality. This research provides a novel solution for addressing inaccurate pose estimation and excessive cumulative errors in mobile robots during mapping and self-localization processes.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-22
  • 最后修改日期:2025-10-30
  • 录用日期:2025-12-11
  • 在线发布日期:
  • 出版日期:
文章二维码